A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains

Hsuan Lin Her, Yu Wei Wu

研究成果: 雜誌貢獻文章同行評審

18 引文 斯高帕斯(Scopus)

摘要

Motivation: Antimicrobial resistance (AMR) is becoming a huge problem in both developed and developing countries, and identifying strains resistant or susceptible to certain antibiotics is essential in fighting against antibiotic-resistant pathogens. Whole-genome sequences have been collected for different microbial strains in order to identify crucial characteristics that allow certain strains to become resistant to antibiotics; however, a global inspection of the gene content responsible for AMR activities remains to be done. Results: We propose a pan-genome-based approach to characterize antibiotic-resistant microbial strains and test this approach on the bacterial model organism Escherichia coli. By identifying core and accessory gene clusters and predicting AMR genes for the E. coli pan-genome, we not only showed that certain classes of genes are unevenly distributed between the core and accessory parts of the pan-genome but also demonstrated that only a portion of the identified AMR genes belong to the accessory genome. Application of machine learning algorithms to predict whether specific strains were resistant to antibiotic drugs yielded the best prediction accuracy for the set of AMR genes within the accessory part of the pan-genome, suggesting that these gene clusters were most crucial to AMR activities in E. coli. Selecting subsets of AMR genes for different antibiotic drugs based on a genetic algorithm (GA) achieved better prediction performances than the gene sets established in the literature, hinting that the gene sets selected by the GA may warrant further analysis in investigating more details about how E. coli fight against antibiotics.
原文英語
頁(從 - 到)i89-i95
期刊Bioinformatics
34
發行號13
DOIs
出版狀態已發佈 - 七月 1 2018

ASJC Scopus subject areas

  • 統計與概率
  • 生物化學
  • 分子生物學
  • 電腦科學應用
  • 計算機理論與數學
  • 計算數學

指紋

深入研究「A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains」主題。共同形成了獨特的指紋。

引用此