TY - JOUR
T1 - 1,25-Dihydroxyvitamin D3 modulates the effects of sublethal BPA on mitochondrial function via activating PI3K-Akt pathway and 17β-estradiol secretion in rat granulosa cells
AU - Lee, Ching Tien
AU - Wang, Jiz Yuh
AU - Chou, Kuang Yi
AU - Hsu, Ming I.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Bisphenol A (BPA), an endocrine-disrupting chemical, is capable of producing reproductive toxicity. BPA results in mitochondrial DNA (mtDNA) deletion and mitochondrial dysfunction; however, the effect of BPA on the mitochondria of ovarian granulosa cells is not clear. Further, 1,25-dihydroxyvitamin D3 (1,25D3) may play a role in reproduction, because its receptor, VDR, contributes to the inhibition of oxidative stress and predominantly exists in the nuclei of granulosa cells. Hence, the role of 1,25D3 in BPA-mediated effects on mitochondrial function was examined in this study. Primary rat granulosa cells treated with BPA, 1,25D3, or both were subjected to molecular/biochemical assays to measure cell survival, mtDNA content, mtDNA deletion, superoxide dismutase activity, levels of proteins related to mitochondrial biogenesis, and mitochondrial function. We found that cell viability was dose-dependently reduced and reactive oxygen species (ROS) levels were increased by BPA treatment. BPA administration elevated Mn-superoxide dismutase (MnSOD) expression but negatively regulated total SOD activity. 1,25D3 treatment alone increased 17β-estradiol secretion, ATP production, and cellular oxygen consumption. In cells treated with both agents, 1,25D3 enhanced BPA-induced MnSOD protein upregulation and blocked the BPA-mediated decline in total SOD activity. Furthermore, 1,25D3 attenuated BPA-mediated mtDNA deletion but showed no effect on BPA-induced increases in mtDNA content. Although BPA had no influence on the levels of peroxisome proliferator-activated receptor-γ coactivator-1 α nuclear respiratory factor-1, mitochondrial transcription factor A, or cytochrome c oxidase subunit IV, 1,25D3 plus BPA markedly increased mitochondrial biogenesis-related protein expression via the PI3K-Akt pathway. Moreover, BPA-mediated negative regulation of cytochrome c oxidase subunit I levels and 17β-estradiol secretion was attenuated by 1,25D3 pre-treatment. Our results suggest that 1,25D3 attenuates BPA-induced decreases in 17β-estradiol and that treatment with 1,25D3 plus BPA regulates granulosa cell mitochondria by elevating mitochondrial biogenesis-related protein levels.
AB - Bisphenol A (BPA), an endocrine-disrupting chemical, is capable of producing reproductive toxicity. BPA results in mitochondrial DNA (mtDNA) deletion and mitochondrial dysfunction; however, the effect of BPA on the mitochondria of ovarian granulosa cells is not clear. Further, 1,25-dihydroxyvitamin D3 (1,25D3) may play a role in reproduction, because its receptor, VDR, contributes to the inhibition of oxidative stress and predominantly exists in the nuclei of granulosa cells. Hence, the role of 1,25D3 in BPA-mediated effects on mitochondrial function was examined in this study. Primary rat granulosa cells treated with BPA, 1,25D3, or both were subjected to molecular/biochemical assays to measure cell survival, mtDNA content, mtDNA deletion, superoxide dismutase activity, levels of proteins related to mitochondrial biogenesis, and mitochondrial function. We found that cell viability was dose-dependently reduced and reactive oxygen species (ROS) levels were increased by BPA treatment. BPA administration elevated Mn-superoxide dismutase (MnSOD) expression but negatively regulated total SOD activity. 1,25D3 treatment alone increased 17β-estradiol secretion, ATP production, and cellular oxygen consumption. In cells treated with both agents, 1,25D3 enhanced BPA-induced MnSOD protein upregulation and blocked the BPA-mediated decline in total SOD activity. Furthermore, 1,25D3 attenuated BPA-mediated mtDNA deletion but showed no effect on BPA-induced increases in mtDNA content. Although BPA had no influence on the levels of peroxisome proliferator-activated receptor-γ coactivator-1 α nuclear respiratory factor-1, mitochondrial transcription factor A, or cytochrome c oxidase subunit IV, 1,25D3 plus BPA markedly increased mitochondrial biogenesis-related protein expression via the PI3K-Akt pathway. Moreover, BPA-mediated negative regulation of cytochrome c oxidase subunit I levels and 17β-estradiol secretion was attenuated by 1,25D3 pre-treatment. Our results suggest that 1,25D3 attenuates BPA-induced decreases in 17β-estradiol and that treatment with 1,25D3 plus BPA regulates granulosa cell mitochondria by elevating mitochondrial biogenesis-related protein levels.
KW - 1,25-dihydroxyvitamin D
KW - 17β-estradiol
KW - Bisphenol A
KW - Granulosa cells
KW - Mitochondrial biogenesis
UR - http://www.scopus.com/inward/record.url?scp=85054011905&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054011905&partnerID=8YFLogxK
U2 - 10.1016/j.jsbmb.2018.09.002
DO - 10.1016/j.jsbmb.2018.09.002
M3 - Article
AN - SCOPUS:85054011905
VL - 185
SP - 200
EP - 211
JO - Journal of Steroid Biochemistry
JF - Journal of Steroid Biochemistry
SN - 0960-0760
ER -