VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion

Mauo Ying Bien, Ming-Ping Wu, Wei Lin Chen, Chi Li Chung

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n = 14; VEGF, odds ratio 1.28, P = 0.01; effusion size, odds ratio 1.01, P = 0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC = 0.985, P <0.001). Conclusions. Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

Original languageEnglish
Article number417124
JournalScientific World Journal
Volume2015
DOIs
Publication statusPublished - 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Environmental Science(all)
  • Medicine(all)

Fingerprint Dive into the research topics of 'VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion'. Together they form a unique fingerprint.

  • Cite this