Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2

Kuo Tai Hua, Wei Jiunn Lee, Shun Fa Yang, Chi Kuan Chen, Michael Hsiao, Chia Chi Ku, Lin Hung Wei, Min Liang Kuo, Ming Hsien Chien

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.

Original languageEnglish
Pages (from-to)387-397
Number of pages11
JournalBiochimica et Biophysica Acta - Molecular Cell Research
Volume1843
Issue number2
DOIs
Publication statusPublished - Feb 2014

Keywords

  • AML
  • Chemoresistance
  • Cyclooxygenase-2
  • Endothelin-1
  • VEGF-C

ASJC Scopus subject areas

  • Cell Biology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2'. Together they form a unique fingerprint.

  • Cite this