Abstract

Airway inflammation plays a major role in the pathophysiology of lung inflammatory diseases such as asthma. Thrombin, a serine protease, is known to mediate central functions in thrombosis and hemostasis and also plays a critical role in lung inflammation via producing chemokine release including interleukin (IL)-8/CXCL8. Our previous studies showed that c-Src- and Rac-dependent nuclear factor (NF)-κB signaling pathways participate in thrombin-induced IL-8/CXCL8 release in human lung epithelial cells. In this study, we further investigated the role of casein kinase 2 (CK2)/mitogen stress-activated protein kinase 1 (MSK1)-dependent p65 phosphorylation in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced IL-8/CXCL8 release was inhibited by CK2 inhibitors (apigenin and tetrabromobenzotriazole, TBB), small interfering RNA of CK2β (CK2β siRNA), and MSK1 siRNA. Treatment of cells with thrombin caused increases in CK2β phosphorylation at Ser209, which was inhibited by a protein kinase C α (PKCα) inhibitor (Ro-32-0432). Thrombin-induced MSK1 phosphorylation at Ser581 and Akt phosphorylation at Ser473 were inhibited by apigenin. Moreover, the thrombin-induced increase in IL-8/CXCL8 release was attenuated by p65 siRNA. Stimulation of cells with thrombin resulted in an increase in p65 phosphorylation at Ser276, which was inhibited by apigenin and MSK1 siRNA. Thrombin-induced κB-luciferase activity was also inhibited by apigenin and MSK1 siRNA. Taken together, these results show that thrombin activates the PKCα/CK2/MSK1 signaling pathways, which in turn initiates p65 phosphorylation and NF-κB activation, and ultimately induces IL-8/CXCL8 release in human lung epithelial cells.

Original languageEnglish
Pages (from-to)135-143
Number of pages9
JournalEuropean Journal of Pharmacology
Volume767
DOIs
Publication statusPublished - Nov 15 2015

Fingerprint

Casein Kinase II
Complement Factor B
Interleukin-8
Thrombin
Epithelial Cells
Lung
Small Interfering RNA
Apigenin
Phosphorylation
mitogen and stress-activated protein kinase 1
Protein C Inhibitor
Serine Proteases
Protein Kinase Inhibitors
Hemostasis
Luciferases
Chemokines
Protein Kinase C
Lung Diseases
Pneumonia
Thrombosis

Keywords

  • Casein kinase 2 (CK2)
  • IL-8/CXCL8
  • Lung inflammation
  • Mitogen stress-activated protein kinase 1 (MSK1)
  • p65
  • Thrombin

ASJC Scopus subject areas

  • Pharmacology

Cite this

@article{8ca3343ce9b645bb9cb99881c9bd1df8,
title = "Thrombin-induced IL-8/CXCL8 release is mediated by CK2, MSK1, and NF-κB pathways in human lung epithelial cells",
abstract = "Airway inflammation plays a major role in the pathophysiology of lung inflammatory diseases such as asthma. Thrombin, a serine protease, is known to mediate central functions in thrombosis and hemostasis and also plays a critical role in lung inflammation via producing chemokine release including interleukin (IL)-8/CXCL8. Our previous studies showed that c-Src- and Rac-dependent nuclear factor (NF)-κB signaling pathways participate in thrombin-induced IL-8/CXCL8 release in human lung epithelial cells. In this study, we further investigated the role of casein kinase 2 (CK2)/mitogen stress-activated protein kinase 1 (MSK1)-dependent p65 phosphorylation in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced IL-8/CXCL8 release was inhibited by CK2 inhibitors (apigenin and tetrabromobenzotriazole, TBB), small interfering RNA of CK2β (CK2β siRNA), and MSK1 siRNA. Treatment of cells with thrombin caused increases in CK2β phosphorylation at Ser209, which was inhibited by a protein kinase C α (PKCα) inhibitor (Ro-32-0432). Thrombin-induced MSK1 phosphorylation at Ser581 and Akt phosphorylation at Ser473 were inhibited by apigenin. Moreover, the thrombin-induced increase in IL-8/CXCL8 release was attenuated by p65 siRNA. Stimulation of cells with thrombin resulted in an increase in p65 phosphorylation at Ser276, which was inhibited by apigenin and MSK1 siRNA. Thrombin-induced κB-luciferase activity was also inhibited by apigenin and MSK1 siRNA. Taken together, these results show that thrombin activates the PKCα/CK2/MSK1 signaling pathways, which in turn initiates p65 phosphorylation and NF-κB activation, and ultimately induces IL-8/CXCL8 release in human lung epithelial cells.",
keywords = "Casein kinase 2 (CK2), IL-8/CXCL8, Lung inflammation, Mitogen stress-activated protein kinase 1 (MSK1), p65, Thrombin",
author = "Chien-Huang Lin and Shih, {Chung Hung} and Chen, {Bing Chang}",
year = "2015",
month = "11",
day = "15",
doi = "10.1016/j.ejphar.2015.10.018",
language = "English",
volume = "767",
pages = "135--143",
journal = "European Journal of Pharmacology",
issn = "0014-2999",
publisher = "Elsevier",

}

TY - JOUR

T1 - Thrombin-induced IL-8/CXCL8 release is mediated by CK2, MSK1, and NF-κB pathways in human lung epithelial cells

AU - Lin, Chien-Huang

AU - Shih, Chung Hung

AU - Chen, Bing Chang

PY - 2015/11/15

Y1 - 2015/11/15

N2 - Airway inflammation plays a major role in the pathophysiology of lung inflammatory diseases such as asthma. Thrombin, a serine protease, is known to mediate central functions in thrombosis and hemostasis and also plays a critical role in lung inflammation via producing chemokine release including interleukin (IL)-8/CXCL8. Our previous studies showed that c-Src- and Rac-dependent nuclear factor (NF)-κB signaling pathways participate in thrombin-induced IL-8/CXCL8 release in human lung epithelial cells. In this study, we further investigated the role of casein kinase 2 (CK2)/mitogen stress-activated protein kinase 1 (MSK1)-dependent p65 phosphorylation in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced IL-8/CXCL8 release was inhibited by CK2 inhibitors (apigenin and tetrabromobenzotriazole, TBB), small interfering RNA of CK2β (CK2β siRNA), and MSK1 siRNA. Treatment of cells with thrombin caused increases in CK2β phosphorylation at Ser209, which was inhibited by a protein kinase C α (PKCα) inhibitor (Ro-32-0432). Thrombin-induced MSK1 phosphorylation at Ser581 and Akt phosphorylation at Ser473 were inhibited by apigenin. Moreover, the thrombin-induced increase in IL-8/CXCL8 release was attenuated by p65 siRNA. Stimulation of cells with thrombin resulted in an increase in p65 phosphorylation at Ser276, which was inhibited by apigenin and MSK1 siRNA. Thrombin-induced κB-luciferase activity was also inhibited by apigenin and MSK1 siRNA. Taken together, these results show that thrombin activates the PKCα/CK2/MSK1 signaling pathways, which in turn initiates p65 phosphorylation and NF-κB activation, and ultimately induces IL-8/CXCL8 release in human lung epithelial cells.

AB - Airway inflammation plays a major role in the pathophysiology of lung inflammatory diseases such as asthma. Thrombin, a serine protease, is known to mediate central functions in thrombosis and hemostasis and also plays a critical role in lung inflammation via producing chemokine release including interleukin (IL)-8/CXCL8. Our previous studies showed that c-Src- and Rac-dependent nuclear factor (NF)-κB signaling pathways participate in thrombin-induced IL-8/CXCL8 release in human lung epithelial cells. In this study, we further investigated the role of casein kinase 2 (CK2)/mitogen stress-activated protein kinase 1 (MSK1)-dependent p65 phosphorylation in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced IL-8/CXCL8 release was inhibited by CK2 inhibitors (apigenin and tetrabromobenzotriazole, TBB), small interfering RNA of CK2β (CK2β siRNA), and MSK1 siRNA. Treatment of cells with thrombin caused increases in CK2β phosphorylation at Ser209, which was inhibited by a protein kinase C α (PKCα) inhibitor (Ro-32-0432). Thrombin-induced MSK1 phosphorylation at Ser581 and Akt phosphorylation at Ser473 were inhibited by apigenin. Moreover, the thrombin-induced increase in IL-8/CXCL8 release was attenuated by p65 siRNA. Stimulation of cells with thrombin resulted in an increase in p65 phosphorylation at Ser276, which was inhibited by apigenin and MSK1 siRNA. Thrombin-induced κB-luciferase activity was also inhibited by apigenin and MSK1 siRNA. Taken together, these results show that thrombin activates the PKCα/CK2/MSK1 signaling pathways, which in turn initiates p65 phosphorylation and NF-κB activation, and ultimately induces IL-8/CXCL8 release in human lung epithelial cells.

KW - Casein kinase 2 (CK2)

KW - IL-8/CXCL8

KW - Lung inflammation

KW - Mitogen stress-activated protein kinase 1 (MSK1)

KW - p65

KW - Thrombin

UR - http://www.scopus.com/inward/record.url?scp=84946399596&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946399596&partnerID=8YFLogxK

U2 - 10.1016/j.ejphar.2015.10.018

DO - 10.1016/j.ejphar.2015.10.018

M3 - Article

VL - 767

SP - 135

EP - 143

JO - European Journal of Pharmacology

JF - European Journal of Pharmacology

SN - 0014-2999

ER -