The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo

Jing Shiun Jan, Yung Chen Chou, Yu Wen Cheng, Chih Kuang Chen, Wei Jan Huang, George Hsiao

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.

Original languageEnglish
Article number1394
JournalInternational Journal of Molecular Sciences
Volume18
Issue number7
DOIs
Publication statusPublished - Jul 1 2017

Fingerprint

Matrix Metalloproteinase 9
inhibitors
Lipopolysaccharides
interleukins
necrosis
Interleukin-6
Sepsis
matrices
Tumor Necrosis Factor-alpha
cells
Yin-Yang
Acetylation
Histone Deacetylase Inhibitors
Chromosomes, Human, Pair 3
Histone Deacetylases
tumors
Macrophages
p38 Mitogen-Activated Protein Kinases
monocytes
Chromosomes

Keywords

  • Endotoxemia
  • Histone deacetylase
  • Lipopolysaccharide (LPS)
  • Matrix metalloproteinases-9 (MMP-9)

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Computer Science Applications
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{30af61c85cc54a36ba9bcc9c0a10b5df,
title = "The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo",
abstract = "Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.",
keywords = "Endotoxemia, Histone deacetylase, Lipopolysaccharide (LPS), Matrix metalloproteinases-9 (MMP-9), Endotoxemia, Histone deacetylase, Lipopolysaccharide (LPS), Matrix metalloproteinases-9 (MMP-9)",
author = "Jan, {Jing Shiun} and Chou, {Yung Chen} and Cheng, {Yu Wen} and Chen, {Chih Kuang} and Huang, {Wei Jan} and George Hsiao",
year = "2017",
month = "7",
day = "1",
doi = "10.3390/ijms18071394",
language = "English",
volume = "18",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "MDPI AG",
number = "7",

}

TY - JOUR

T1 - The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo

AU - Jan, Jing Shiun

AU - Chou, Yung Chen

AU - Cheng, Yu Wen

AU - Chen, Chih Kuang

AU - Huang, Wei Jan

AU - Hsiao, George

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.

AB - Dysregulated human monocytes/macrophages can synthesize and secrete matrix metalloproteinases (MMPs), which play important roles in the progression of sepsis. In this study, we investigated the effects and mechanism of a novel histone deacetylase (HDAC8) inhibitor, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16), on MMP-9 production and activation in stimulated human monocytic THP-1 cells. Our results demonstrated that the acetylation level of structural maintenance of chromosomes 3 (SMC3) was up-regulated by WK2-16 in THP-1 cells. Consistently, an in vitro enzyme study demonstrated that WK2-16 selectively inhibited HDAC8 activity. Moreover, the WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS). Additionally, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 suppressed the extracellular levels of interleukin (IL)-6 from LPS-stimulated THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. Finally, in vivo studies indicated that WK2-16 could reduce the serum levels of TNF-α and IL-6 in endotoxemic mice. These results suggested that HDAC8 inhibition might provide a novel therapeutic strategy of hypercytokinemia in sepsis.

KW - Endotoxemia

KW - Histone deacetylase

KW - Lipopolysaccharide (LPS)

KW - Matrix metalloproteinases-9 (MMP-9)

KW - Endotoxemia

KW - Histone deacetylase

KW - Lipopolysaccharide (LPS)

KW - Matrix metalloproteinases-9 (MMP-9)

UR - http://www.scopus.com/inward/record.url?scp=85021667337&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85021667337&partnerID=8YFLogxK

U2 - 10.3390/ijms18071394

DO - 10.3390/ijms18071394

M3 - Article

C2 - 28661460

AN - SCOPUS:85021667337

VL - 18

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 7

M1 - 1394

ER -