The GLP-1 receptor agonist exenatide ameliorates neuroinflammation, locomotor activity, and anxiety-like behavior in mice with diet-induced obesity through the modulation of microglial M2 polarization and downregulation of SR-A4

Ming Hong Lin, Po Ching Cheng, Pi Jung Hsiao, Szu Chia Chen, Chih Hsing Hung, Chao Hung Kuo, Shau Ku Huang, Hsin Ying Clair Chiou

Research output: Contribution to journalArticlepeer-review


Obesity is associated with multiple comorbidities, such as metabolic abnormalities and cognitive dysfunction. Moreover, accumulating evidence indicates that neurodegenerative disorders are associated with chronic neuroinflammation. GLP-1 receptor agonists (RAs) have been extensively studied as a treatment for type 2 diabetes. Emerging evidence has demonstrated a protective effect of GLP-1 RAs on neurodegenerative disease, which is independent of its glucose-lowering effects. In this study, we aimed to examine the effects of a long-acting GLP-1 RA, exenatide, on high-fat diet (HFD)-induced neuroinflammation and related brain function impairment. First, mice treated with exenatide exhibited significantly reduced HFD-increased body weight and blood glucose. In an open field test, exenatide treatment ameliorated the reduction in local motor activity and anxiety in HFD-fed mice. Moreover, HFD induced astrogliosis, microgliosis, and upregulation of IL-1β, IL-6 and TNF-α in hippocampus and cortex. Exenatide treatment reduced HFD-induced astrogliosis and IL-1β and TNF-α expressions. Moreover, exenatide increased phosphor-ERK and M2-type microglia marker arginase-1 expression in the hippocampus and cortex. In addition, we found that scavenger receptor-A4 protein expression was induced by HFD and was subsequently inhibited by exenatide. SR-A4 knockout reversed the locomotor activity impairment but not the anxiety behavior caused by HFD consumption. SR-A4 knockout also reduced HFD-induced neuroinflammation, as shown by the reduced expression of GFAP and IBA-1 compared with that in wild-type control mice. These results demonstrate that exenatide decreases HFD-increased neuroinflammation and promotes anti-inflammatory M2 differentiation. The inhibition of SR-A4 by exenatide exerts anti-inflammatory activity.

Original languageEnglish
Article number109653
JournalInternational Immunopharmacology
Publication statusPublished - Feb 2023


  • Exenatide
  • Neuroinflammation
  • Obesity
  • SR-A4
  • T2DM

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Pharmacology

Cite this