The effect of putative nucleation sites on the loading and stability of iron in ferritin

Shu Hui Juan, Steven D. Aust

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

The L chain of the iron storage protein ferritin contains more putative nucleation sites in the core (Glu53, 56, 57, 60, and 63) than does the H chain (Glu61, 64, and 67). Recombinant DNA techniques were used to investigate the role of these putative nucleation sites on iron loading by ceruloplasmin and on the stability of the iron core. Recombinant rat liver ferritin H chain homopolymer and the two mutants (E61A and E61A-E64A), containing three, two and one nucleation sites, respectively, loaded up to 2010 ± 50, 2010 ± 40, and 1950 ± 40 atoms of iron per ferritin, respectively. However, the mutations resulted in a 50% decrease in the rate of iron loading by ceruloplasmin. The ferritin variants incorporated the same amount of phosphate after iron loading (410 ± 20, 400 ± 30, and 420 ± 20 atoms per ferritin, respectively). The stability of the iron cores prior to phosphate incorporation, assessed by the rate of iron release by 10 mM EDTA and the paraquat cation radical, corresponded to numbers of proposed nucleation sites. The subsequent incorporation of phosphate seemed to stabilize the iron core and minimized the effect of numbers of putative nucleation sites in ferritin on the rate of iron release by EDTA and the paraquat cation radical. After incorporation of phosphate the ferritins behaved similarly to the native rat liver ferritin with respect to the rate of iron release by the paraquat cation radical.

Original languageEnglish
Pages (from-to)259-265
Number of pages7
JournalArchives of Biochemistry and Biophysics
Volume350
Issue number2
DOIs
Publication statusPublished - Feb 15 1998
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Fingerprint Dive into the research topics of 'The effect of putative nucleation sites on the loading and stability of iron in ferritin'. Together they form a unique fingerprint.

  • Cite this