The development and application of an analysis system for physiological rhythms

Research output: Contribution to journalReview article

Abstract

Ten years ago, little was known about short-term rhythms of physiological signals. These rhythms had a period of around 3 to 10 seconds, and were broadly found in blood pressure and heart rate signals. Because of a lack of analytical tools, only a small fraction of physiological laboratories could study them with specially designed computer programs. It was difficult for investigators, as well as the general population, to appreciate the importance of these rhythms. I started research on physiological rhythms in 1990, and designed an analytical system for the computer. The program was constructed in four parts, basic input-output, signal processing, graphical and numerical output and timing control subsystems. The prototype was finished in 1990, and was frequently revised to offer specific features. Power spectral analysis was first incorporated. It separated and quantified periodical variations in arterial pressure, heart rate, electromyogram, electroencephalogram and even neuronal activity. I designed a computer program for transfer function analysis of paired physiological signals and constructed programmable electric stimulators, analog-digital converters and programmable ventilators since 1994. With the applications of the hardware and software, a number of animal experiments were done to explore the frequency-domain relationship of two specific biological signals. In 1996, I started to design a cerebral blood flow analysis program. With the cooperation of clinical investigators, we performed human experiments to test a new protocol to detect the cerebral autoregulation function non-invasively. At the same time, the analysis system was applied in the field of public health. I designed an electrocardiogram (ECG) acquisition device by which ECG signals of 3,000 more people were collected to analyze heart rate variability. Since ten years ago, I had written more than 40,000 lines of program codes, and constructed tens of electric circuits. More than 40 research papers have been derived from this system. More important, my colleagues and I have successfully generalized the knowledge and techniques of physiological rhythms into various fields of biomedical sciences. The analyses of physiological rhythms have provided the following applications: (1) detecting depth of general anesthesia. (2) detecting baroreflex sensitivity. (3) detecting autonomic activities. (4) diagnosis of brain death. (5) outcome prediction of critical illness. (6) detection of rejection of transplanted hearts. (7) evaluation of aging. (8) evaluation of cerebrovascular functions. (9) study of essential hypertension. The underlying mechanisms and potential applications warrant further invstigation.

Original languageEnglish
Pages (from-to)113-129
Number of pages17
JournalTzu Chi Medical Journal
Volume13
Issue number2
Publication statusPublished - 2001
Externally publishedYes

Fingerprint

Software
Heart Rate
Cerebrovascular Circulation
Electrocardiography
Research Personnel
Brain Death
Baroreflex
Computer Systems
Electromyography
Mechanical Ventilators
Research
Critical Illness
General Anesthesia
Electroencephalography
Arterial Pressure
Homeostasis
Public Health
Blood Pressure
Equipment and Supplies
Population

Keywords

  • Fluctuation
  • Frequency domain
  • Time domain
  • Variability

ASJC Scopus subject areas

  • Medicine(all)

Cite this

The development and application of an analysis system for physiological rhythms. / Kuo, T. B.J.

In: Tzu Chi Medical Journal, Vol. 13, No. 2, 2001, p. 113-129.

Research output: Contribution to journalReview article

@article{debd7d6330cb4d1aa847049b914e8391,
title = "The development and application of an analysis system for physiological rhythms",
abstract = "Ten years ago, little was known about short-term rhythms of physiological signals. These rhythms had a period of around 3 to 10 seconds, and were broadly found in blood pressure and heart rate signals. Because of a lack of analytical tools, only a small fraction of physiological laboratories could study them with specially designed computer programs. It was difficult for investigators, as well as the general population, to appreciate the importance of these rhythms. I started research on physiological rhythms in 1990, and designed an analytical system for the computer. The program was constructed in four parts, basic input-output, signal processing, graphical and numerical output and timing control subsystems. The prototype was finished in 1990, and was frequently revised to offer specific features. Power spectral analysis was first incorporated. It separated and quantified periodical variations in arterial pressure, heart rate, electromyogram, electroencephalogram and even neuronal activity. I designed a computer program for transfer function analysis of paired physiological signals and constructed programmable electric stimulators, analog-digital converters and programmable ventilators since 1994. With the applications of the hardware and software, a number of animal experiments were done to explore the frequency-domain relationship of two specific biological signals. In 1996, I started to design a cerebral blood flow analysis program. With the cooperation of clinical investigators, we performed human experiments to test a new protocol to detect the cerebral autoregulation function non-invasively. At the same time, the analysis system was applied in the field of public health. I designed an electrocardiogram (ECG) acquisition device by which ECG signals of 3,000 more people were collected to analyze heart rate variability. Since ten years ago, I had written more than 40,000 lines of program codes, and constructed tens of electric circuits. More than 40 research papers have been derived from this system. More important, my colleagues and I have successfully generalized the knowledge and techniques of physiological rhythms into various fields of biomedical sciences. The analyses of physiological rhythms have provided the following applications: (1) detecting depth of general anesthesia. (2) detecting baroreflex sensitivity. (3) detecting autonomic activities. (4) diagnosis of brain death. (5) outcome prediction of critical illness. (6) detection of rejection of transplanted hearts. (7) evaluation of aging. (8) evaluation of cerebrovascular functions. (9) study of essential hypertension. The underlying mechanisms and potential applications warrant further invstigation.",
keywords = "Fluctuation, Frequency domain, Time domain, Variability",
author = "Kuo, {T. B.J.}",
year = "2001",
language = "English",
volume = "13",
pages = "113--129",
journal = "Tzu Chi Medical Journal",
issn = "1016-3190",
publisher = "財團法人中華民國佛教慈濟慈善事業基金會",
number = "2",

}

TY - JOUR

T1 - The development and application of an analysis system for physiological rhythms

AU - Kuo, T. B.J.

PY - 2001

Y1 - 2001

N2 - Ten years ago, little was known about short-term rhythms of physiological signals. These rhythms had a period of around 3 to 10 seconds, and were broadly found in blood pressure and heart rate signals. Because of a lack of analytical tools, only a small fraction of physiological laboratories could study them with specially designed computer programs. It was difficult for investigators, as well as the general population, to appreciate the importance of these rhythms. I started research on physiological rhythms in 1990, and designed an analytical system for the computer. The program was constructed in four parts, basic input-output, signal processing, graphical and numerical output and timing control subsystems. The prototype was finished in 1990, and was frequently revised to offer specific features. Power spectral analysis was first incorporated. It separated and quantified periodical variations in arterial pressure, heart rate, electromyogram, electroencephalogram and even neuronal activity. I designed a computer program for transfer function analysis of paired physiological signals and constructed programmable electric stimulators, analog-digital converters and programmable ventilators since 1994. With the applications of the hardware and software, a number of animal experiments were done to explore the frequency-domain relationship of two specific biological signals. In 1996, I started to design a cerebral blood flow analysis program. With the cooperation of clinical investigators, we performed human experiments to test a new protocol to detect the cerebral autoregulation function non-invasively. At the same time, the analysis system was applied in the field of public health. I designed an electrocardiogram (ECG) acquisition device by which ECG signals of 3,000 more people were collected to analyze heart rate variability. Since ten years ago, I had written more than 40,000 lines of program codes, and constructed tens of electric circuits. More than 40 research papers have been derived from this system. More important, my colleagues and I have successfully generalized the knowledge and techniques of physiological rhythms into various fields of biomedical sciences. The analyses of physiological rhythms have provided the following applications: (1) detecting depth of general anesthesia. (2) detecting baroreflex sensitivity. (3) detecting autonomic activities. (4) diagnosis of brain death. (5) outcome prediction of critical illness. (6) detection of rejection of transplanted hearts. (7) evaluation of aging. (8) evaluation of cerebrovascular functions. (9) study of essential hypertension. The underlying mechanisms and potential applications warrant further invstigation.

AB - Ten years ago, little was known about short-term rhythms of physiological signals. These rhythms had a period of around 3 to 10 seconds, and were broadly found in blood pressure and heart rate signals. Because of a lack of analytical tools, only a small fraction of physiological laboratories could study them with specially designed computer programs. It was difficult for investigators, as well as the general population, to appreciate the importance of these rhythms. I started research on physiological rhythms in 1990, and designed an analytical system for the computer. The program was constructed in four parts, basic input-output, signal processing, graphical and numerical output and timing control subsystems. The prototype was finished in 1990, and was frequently revised to offer specific features. Power spectral analysis was first incorporated. It separated and quantified periodical variations in arterial pressure, heart rate, electromyogram, electroencephalogram and even neuronal activity. I designed a computer program for transfer function analysis of paired physiological signals and constructed programmable electric stimulators, analog-digital converters and programmable ventilators since 1994. With the applications of the hardware and software, a number of animal experiments were done to explore the frequency-domain relationship of two specific biological signals. In 1996, I started to design a cerebral blood flow analysis program. With the cooperation of clinical investigators, we performed human experiments to test a new protocol to detect the cerebral autoregulation function non-invasively. At the same time, the analysis system was applied in the field of public health. I designed an electrocardiogram (ECG) acquisition device by which ECG signals of 3,000 more people were collected to analyze heart rate variability. Since ten years ago, I had written more than 40,000 lines of program codes, and constructed tens of electric circuits. More than 40 research papers have been derived from this system. More important, my colleagues and I have successfully generalized the knowledge and techniques of physiological rhythms into various fields of biomedical sciences. The analyses of physiological rhythms have provided the following applications: (1) detecting depth of general anesthesia. (2) detecting baroreflex sensitivity. (3) detecting autonomic activities. (4) diagnosis of brain death. (5) outcome prediction of critical illness. (6) detection of rejection of transplanted hearts. (7) evaluation of aging. (8) evaluation of cerebrovascular functions. (9) study of essential hypertension. The underlying mechanisms and potential applications warrant further invstigation.

KW - Fluctuation

KW - Frequency domain

KW - Time domain

KW - Variability

UR - http://www.scopus.com/inward/record.url?scp=0034881011&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034881011&partnerID=8YFLogxK

M3 - Review article

VL - 13

SP - 113

EP - 129

JO - Tzu Chi Medical Journal

JF - Tzu Chi Medical Journal

SN - 1016-3190

IS - 2

ER -