The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p

Gi Shih Lien, Jen-Fang Liu, Ming Hsien Chien, Wei Tse Hsu, Tzu Hao Chang, Chia Chi Ku, Andrea Tung Qian Ji, Peng Tan, Ting Lieh Hsieh, Liang Ming Lee, Jennifer H. Ho

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Introduction. Our previous works demonstrated that systemic orbital fat-derived stem cell (OFSC) transplantation was effective in ameliorating lipopolysaccharide (LPS)-induced extensive acute lung injury (ALI) in vivo mainly through paracrine regulation of macrophage-mediated cytokine-storm. In this study, we explore the molecular mechanism(s) of OFSCs regulating macrophage activity in a cytokine-inducible fashion. Methods. LPS (100 ng/ml)-activated macrophages were treated by conditioned medium from OFSCs (OFSCs-CM) or non-contact cultured with OFSCs for 6 hours. The potency of OFSCs on macrophage proliferation and pro-inflammation ability were determined. Expression levels of pro-inflammatory cytokines in macrophages, inducible immuno-modulatory factors in OFSCs, were investigated. Deep sequencing analysis as well as interaction between microRNA (miRNA) and genes of immuno-modulators in OFSCs induced by activated macrophages was predicted by miRTar. Transfection of miRNA inhibitor into OFSCs was performed. Real-time RT-PCR and transplantation of OFSCs into mice with LPS-induced ALI confirmed the in vitro and in vivo mechanism. Results: The paracrine effect of OFSCs on inhibition of macrophage pro-inflammatory cytokine release was more potent than induction of macrophage G0/G1 cell cycle arrest. OFSCs-CM suppressed LPS-induced inducible nitric oxide synthetase and the pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 alpha, and IL-1 beta expression in macrophages. Under non-contact culture, LPS-activated macrophages effectively triggered the expression of soluble immuno-modulating factors in OFSCs, i.e., IL-10, IL-1 receptor antagonist (IL-1 RA), indoleamine 2,3-dioxygenase, and soluble TNF receptor type II (sTNF RII). Under miRTar prediction, miR-671-5p was identified as a critical microRNA in regulation of multiple immune-modulating factors in OFSCs response to macrophages. The baseline level of miR-671-5p was high in OFSCs, and down-regulation of miR-671-5p upon co-culture with activated macrophages was observed. MiR-671-5p inhibitor transfection into OFSCs selectively enhanced the IL-1 RA and sTNF RII expressions. In addition, inhibition of miR-671-5p in OFSCs enhanced the anti-inflammatory ability against LPS-induced ALI. Conclusion: The paracrine effect of OFSCs inhibits the pro-inflammatory ability and proliferation of macrophages. The immune-modulation capacity of OFSCs can be triggered by activated macrophages, and down-regulation of miR-671-5p enhances OFSC immuno-modulation ability by up-regulating IL-1 RA and sTNF RII expression.

Original languageEnglish
Article number97
JournalStem Cell Research and Therapy
Volume5
Issue number4
DOIs
Publication statusPublished - Aug 13 2014

Fingerprint

Macrophages
Stem cells
Adipocytes
Stem Cells
Fats
Inflammation
Lipopolysaccharides
Acute Lung Injury
Cytokines
Tumor Necrosis Factor Receptors
MicroRNAs
Interleukin-1
Cell culture
Transfection
Down-Regulation
Modulation
Indoleamine-Pyrrole 2,3,-Dioxygenase
G1 Phase Cell Cycle Checkpoints
High-Throughput Nucleotide Sequencing
Interleukin-1alpha

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • Molecular Medicine
  • Cell Biology
  • Medicine (miscellaneous)

Cite this

The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p. / Lien, Gi Shih; Liu, Jen-Fang; Chien, Ming Hsien; Hsu, Wei Tse; Chang, Tzu Hao; Ku, Chia Chi; Ji, Andrea Tung Qian; Tan, Peng; Hsieh, Ting Lieh; Lee, Liang Ming; Ho, Jennifer H.

In: Stem Cell Research and Therapy, Vol. 5, No. 4, 97, 13.08.2014.

Research output: Contribution to journalArticle

Lien, Gi Shih ; Liu, Jen-Fang ; Chien, Ming Hsien ; Hsu, Wei Tse ; Chang, Tzu Hao ; Ku, Chia Chi ; Ji, Andrea Tung Qian ; Tan, Peng ; Hsieh, Ting Lieh ; Lee, Liang Ming ; Ho, Jennifer H. / The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p. In: Stem Cell Research and Therapy. 2014 ; Vol. 5, No. 4.
@article{ff7185cb926940eab41d9934a0fac469,
title = "The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p",
abstract = "Introduction. Our previous works demonstrated that systemic orbital fat-derived stem cell (OFSC) transplantation was effective in ameliorating lipopolysaccharide (LPS)-induced extensive acute lung injury (ALI) in vivo mainly through paracrine regulation of macrophage-mediated cytokine-storm. In this study, we explore the molecular mechanism(s) of OFSCs regulating macrophage activity in a cytokine-inducible fashion. Methods. LPS (100 ng/ml)-activated macrophages were treated by conditioned medium from OFSCs (OFSCs-CM) or non-contact cultured with OFSCs for 6 hours. The potency of OFSCs on macrophage proliferation and pro-inflammation ability were determined. Expression levels of pro-inflammatory cytokines in macrophages, inducible immuno-modulatory factors in OFSCs, were investigated. Deep sequencing analysis as well as interaction between microRNA (miRNA) and genes of immuno-modulators in OFSCs induced by activated macrophages was predicted by miRTar. Transfection of miRNA inhibitor into OFSCs was performed. Real-time RT-PCR and transplantation of OFSCs into mice with LPS-induced ALI confirmed the in vitro and in vivo mechanism. Results: The paracrine effect of OFSCs on inhibition of macrophage pro-inflammatory cytokine release was more potent than induction of macrophage G0/G1 cell cycle arrest. OFSCs-CM suppressed LPS-induced inducible nitric oxide synthetase and the pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 alpha, and IL-1 beta expression in macrophages. Under non-contact culture, LPS-activated macrophages effectively triggered the expression of soluble immuno-modulating factors in OFSCs, i.e., IL-10, IL-1 receptor antagonist (IL-1 RA), indoleamine 2,3-dioxygenase, and soluble TNF receptor type II (sTNF RII). Under miRTar prediction, miR-671-5p was identified as a critical microRNA in regulation of multiple immune-modulating factors in OFSCs response to macrophages. The baseline level of miR-671-5p was high in OFSCs, and down-regulation of miR-671-5p upon co-culture with activated macrophages was observed. MiR-671-5p inhibitor transfection into OFSCs selectively enhanced the IL-1 RA and sTNF RII expressions. In addition, inhibition of miR-671-5p in OFSCs enhanced the anti-inflammatory ability against LPS-induced ALI. Conclusion: The paracrine effect of OFSCs inhibits the pro-inflammatory ability and proliferation of macrophages. The immune-modulation capacity of OFSCs can be triggered by activated macrophages, and down-regulation of miR-671-5p enhances OFSC immuno-modulation ability by up-regulating IL-1 RA and sTNF RII expression.",
author = "Lien, {Gi Shih} and Jen-Fang Liu and Chien, {Ming Hsien} and Hsu, {Wei Tse} and Chang, {Tzu Hao} and Ku, {Chia Chi} and Ji, {Andrea Tung Qian} and Peng Tan and Hsieh, {Ting Lieh} and Lee, {Liang Ming} and Ho, {Jennifer H.}",
year = "2014",
month = "8",
day = "13",
doi = "10.1186/scrt486",
language = "English",
volume = "5",
journal = "Stem Cell Research and Therapy",
issn = "1757-6512",
publisher = "BioMed Central",
number = "4",

}

TY - JOUR

T1 - The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p

AU - Lien, Gi Shih

AU - Liu, Jen-Fang

AU - Chien, Ming Hsien

AU - Hsu, Wei Tse

AU - Chang, Tzu Hao

AU - Ku, Chia Chi

AU - Ji, Andrea Tung Qian

AU - Tan, Peng

AU - Hsieh, Ting Lieh

AU - Lee, Liang Ming

AU - Ho, Jennifer H.

PY - 2014/8/13

Y1 - 2014/8/13

N2 - Introduction. Our previous works demonstrated that systemic orbital fat-derived stem cell (OFSC) transplantation was effective in ameliorating lipopolysaccharide (LPS)-induced extensive acute lung injury (ALI) in vivo mainly through paracrine regulation of macrophage-mediated cytokine-storm. In this study, we explore the molecular mechanism(s) of OFSCs regulating macrophage activity in a cytokine-inducible fashion. Methods. LPS (100 ng/ml)-activated macrophages were treated by conditioned medium from OFSCs (OFSCs-CM) or non-contact cultured with OFSCs for 6 hours. The potency of OFSCs on macrophage proliferation and pro-inflammation ability were determined. Expression levels of pro-inflammatory cytokines in macrophages, inducible immuno-modulatory factors in OFSCs, were investigated. Deep sequencing analysis as well as interaction between microRNA (miRNA) and genes of immuno-modulators in OFSCs induced by activated macrophages was predicted by miRTar. Transfection of miRNA inhibitor into OFSCs was performed. Real-time RT-PCR and transplantation of OFSCs into mice with LPS-induced ALI confirmed the in vitro and in vivo mechanism. Results: The paracrine effect of OFSCs on inhibition of macrophage pro-inflammatory cytokine release was more potent than induction of macrophage G0/G1 cell cycle arrest. OFSCs-CM suppressed LPS-induced inducible nitric oxide synthetase and the pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 alpha, and IL-1 beta expression in macrophages. Under non-contact culture, LPS-activated macrophages effectively triggered the expression of soluble immuno-modulating factors in OFSCs, i.e., IL-10, IL-1 receptor antagonist (IL-1 RA), indoleamine 2,3-dioxygenase, and soluble TNF receptor type II (sTNF RII). Under miRTar prediction, miR-671-5p was identified as a critical microRNA in regulation of multiple immune-modulating factors in OFSCs response to macrophages. The baseline level of miR-671-5p was high in OFSCs, and down-regulation of miR-671-5p upon co-culture with activated macrophages was observed. MiR-671-5p inhibitor transfection into OFSCs selectively enhanced the IL-1 RA and sTNF RII expressions. In addition, inhibition of miR-671-5p in OFSCs enhanced the anti-inflammatory ability against LPS-induced ALI. Conclusion: The paracrine effect of OFSCs inhibits the pro-inflammatory ability and proliferation of macrophages. The immune-modulation capacity of OFSCs can be triggered by activated macrophages, and down-regulation of miR-671-5p enhances OFSC immuno-modulation ability by up-regulating IL-1 RA and sTNF RII expression.

AB - Introduction. Our previous works demonstrated that systemic orbital fat-derived stem cell (OFSC) transplantation was effective in ameliorating lipopolysaccharide (LPS)-induced extensive acute lung injury (ALI) in vivo mainly through paracrine regulation of macrophage-mediated cytokine-storm. In this study, we explore the molecular mechanism(s) of OFSCs regulating macrophage activity in a cytokine-inducible fashion. Methods. LPS (100 ng/ml)-activated macrophages were treated by conditioned medium from OFSCs (OFSCs-CM) or non-contact cultured with OFSCs for 6 hours. The potency of OFSCs on macrophage proliferation and pro-inflammation ability were determined. Expression levels of pro-inflammatory cytokines in macrophages, inducible immuno-modulatory factors in OFSCs, were investigated. Deep sequencing analysis as well as interaction between microRNA (miRNA) and genes of immuno-modulators in OFSCs induced by activated macrophages was predicted by miRTar. Transfection of miRNA inhibitor into OFSCs was performed. Real-time RT-PCR and transplantation of OFSCs into mice with LPS-induced ALI confirmed the in vitro and in vivo mechanism. Results: The paracrine effect of OFSCs on inhibition of macrophage pro-inflammatory cytokine release was more potent than induction of macrophage G0/G1 cell cycle arrest. OFSCs-CM suppressed LPS-induced inducible nitric oxide synthetase and the pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1 alpha, and IL-1 beta expression in macrophages. Under non-contact culture, LPS-activated macrophages effectively triggered the expression of soluble immuno-modulating factors in OFSCs, i.e., IL-10, IL-1 receptor antagonist (IL-1 RA), indoleamine 2,3-dioxygenase, and soluble TNF receptor type II (sTNF RII). Under miRTar prediction, miR-671-5p was identified as a critical microRNA in regulation of multiple immune-modulating factors in OFSCs response to macrophages. The baseline level of miR-671-5p was high in OFSCs, and down-regulation of miR-671-5p upon co-culture with activated macrophages was observed. MiR-671-5p inhibitor transfection into OFSCs selectively enhanced the IL-1 RA and sTNF RII expressions. In addition, inhibition of miR-671-5p in OFSCs enhanced the anti-inflammatory ability against LPS-induced ALI. Conclusion: The paracrine effect of OFSCs inhibits the pro-inflammatory ability and proliferation of macrophages. The immune-modulation capacity of OFSCs can be triggered by activated macrophages, and down-regulation of miR-671-5p enhances OFSC immuno-modulation ability by up-regulating IL-1 RA and sTNF RII expression.

UR - http://www.scopus.com/inward/record.url?scp=84906924758&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906924758&partnerID=8YFLogxK

U2 - 10.1186/scrt486

DO - 10.1186/scrt486

M3 - Article

C2 - 25124290

AN - SCOPUS:84906924758

VL - 5

JO - Stem Cell Research and Therapy

JF - Stem Cell Research and Therapy

SN - 1757-6512

IS - 4

M1 - 97

ER -