TY - JOUR
T1 - Targeting FAT1 inhibits carcinogenesis, induces oxidative stress and enhances cisplatin sensitivity through deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell carcinoma
AU - Hsu, Tung Nien
AU - Huang, Chih Ming
AU - Huang, Chin Sheng
AU - Huang, Mao Suan
AU - Yeh, Chi Tai
AU - Chao, Tsu Yi
AU - Bamodu, Oluwaseun Adebayo
PY - 2019/12
Y1 - 2019/12
N2 - FAT atypical cadherin 1 (FAT1) regulates cell-cell adhesion and extracellular matrix architecture, while acting as tumor suppressor or oncogene, context-dependently. Despite implication of FAT1 in several malignancies, its role in oral squamous cell carcinoma (OSCC) remains unclear. Herein, we document the driver-oncogene role of FAT1, and its mediation of cell-death evasion, proliferation, oncogenicity, and chemoresistance in OSCC. In-silica analyses indicate FAT1 mutations are frequent and drive head-neck SCC, with enhanced expression defining high-risk population and poor prognosis. We demonstrated aberrant FAT1 mRNA and protein expression in OSCC compared with non-cancer tissues, whereas loss-of-FAT1-function attenuates human primary SAS and metastatic HSC-3 OSCC cell viability, without affecting normal primary human gingival fibroblast cells. shFAT1 suppressed PCNA and upregulated BAX/BCL2 ratio in SAS and HSC-3 cells. Moreover, compared with wild-type cells, shFAT1 concomitantly impaired HSC-3 cell migration, invasion, and clonogenicity. Interestingly, while over-expressed FAT1 characterized cisplatin-resistance (CispR), shFAT1 synchronously re-sensitized CispR cells to cisplatin, enhanced glutathione (GSH)/GSH synthetase (GSS)-mediated oxidative stress and deregulated LRP5/WNT2 signaling. Concisely, FAT1 is an actionable driver-oncogene in OSCC and targeting FAT1 in patients with erstwhile cisplatin-resistant OSCC is therapeutically promising.
AB - FAT atypical cadherin 1 (FAT1) regulates cell-cell adhesion and extracellular matrix architecture, while acting as tumor suppressor or oncogene, context-dependently. Despite implication of FAT1 in several malignancies, its role in oral squamous cell carcinoma (OSCC) remains unclear. Herein, we document the driver-oncogene role of FAT1, and its mediation of cell-death evasion, proliferation, oncogenicity, and chemoresistance in OSCC. In-silica analyses indicate FAT1 mutations are frequent and drive head-neck SCC, with enhanced expression defining high-risk population and poor prognosis. We demonstrated aberrant FAT1 mRNA and protein expression in OSCC compared with non-cancer tissues, whereas loss-of-FAT1-function attenuates human primary SAS and metastatic HSC-3 OSCC cell viability, without affecting normal primary human gingival fibroblast cells. shFAT1 suppressed PCNA and upregulated BAX/BCL2 ratio in SAS and HSC-3 cells. Moreover, compared with wild-type cells, shFAT1 concomitantly impaired HSC-3 cell migration, invasion, and clonogenicity. Interestingly, while over-expressed FAT1 characterized cisplatin-resistance (CispR), shFAT1 synchronously re-sensitized CispR cells to cisplatin, enhanced glutathione (GSH)/GSH synthetase (GSS)-mediated oxidative stress and deregulated LRP5/WNT2 signaling. Concisely, FAT1 is an actionable driver-oncogene in OSCC and targeting FAT1 in patients with erstwhile cisplatin-resistant OSCC is therapeutically promising.
KW - Atypical cadherin
KW - Chemoresistance
KW - Cisplatin
KW - FAT1
KW - GSH
KW - GSS
KW - LRP5
KW - Oncogene
KW - OSCC
KW - Oxidative stress
KW - Squamous cell carcinoma
KW - Wnt signaling
UR - http://www.scopus.com/inward/record.url?scp=85075749093&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075749093&partnerID=8YFLogxK
U2 - 10.3390/cancers11121883
DO - 10.3390/cancers11121883
M3 - Article
AN - SCOPUS:85075749093
VL - 11
JO - Cancers
JF - Cancers
SN - 2072-6694
IS - 12
M1 - 1883
ER -