Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose

Ying Chen Chen, Hsiu O. Ho, Der Zen Liu, Wen Shian Siow, Ming Thau Sheu

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug' s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the watersoluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics.

Original languageEnglish
Article numbere0116914
JournalPLoS One
Volume10
Issue number1
DOIs
Publication statusPublished - Jan 24 2015

Fingerprint

drug delivery systems
Carboxymethylcellulose Sodium
carboxymethylcellulose
Drug Delivery Systems
Cellulose
Swelling
cellulose
Sodium
sodium
drugs
Pharmaceutical Preparations
Esomeprazole
Solubility
metformin
Water
solubility
Metformin
Ciprofloxacin
ciprofloxacin
Tablets

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

@article{5de0cdbf399f4f7fa5c1b41f8fd868be,
title = "Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose",
abstract = "The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug' s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the watersoluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics.",
author = "Chen, {Ying Chen} and Ho, {Hsiu O.} and Liu, {Der Zen} and Siow, {Wen Shian} and Sheu, {Ming Thau}",
year = "2015",
month = "1",
day = "24",
doi = "10.1371/journal.pone.0116914",
language = "English",
volume = "10",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "1",

}

TY - JOUR

T1 - Swelling/floating capability and drug release characterizations of gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose

AU - Chen, Ying Chen

AU - Ho, Hsiu O.

AU - Liu, Der Zen

AU - Siow, Wen Shian

AU - Sheu, Ming Thau

PY - 2015/1/24

Y1 - 2015/1/24

N2 - The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug' s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the watersoluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics.

AB - The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug' s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the watersoluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics.

UR - http://www.scopus.com/inward/record.url?scp=84921986770&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84921986770&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0116914

DO - 10.1371/journal.pone.0116914

M3 - Article

VL - 10

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 1

M1 - e0116914

ER -