Structure-function studies on inhibitory activity of Bungarus multicinctus protease inhibitor-like protein on matrix metalloprotease-2, and invasion and migration of human neuroblastoma SK-N-SH cells

Wen Min Chou, Wen Hsin Liu, Ku Chung Chen, Long Sen Chang

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

In view of the findings that several Kunitz-type protein inhibitors suppress tumor invasion and metastasis, the aim of the present study is to explore whether Bungarus multicinctus protease inhibitor-like protein-2 (PILP-2) and PILP-3 exhibit anti-tumor activity. Although approximately 28% of amino acid substitutions occurred between PILP-2 and PILP-3, molecular modeling suggested that PILP-2 and PILP-3 shared similar folded structures. Unlike PILP-2, PILP-3 showed a notable activity in abolishing migration and invasion of human neuroblastoma SK-N-SH cells. The ability of PILP-3 to inhibit matrix metalloprotease-2 (MMP-2) activity was higher than that of PILP-2. Pull-down assay revealed protein-protein interaction between PILP-3 and MMP-2. In contrast to mutation on N-terminal region, replacement of amino acids at C-terminus attenuated notably the ability of PILP-3 to inhibit cell invasion, cell migration and MMP-2 activity as well as the binding capability of PILP-3 with MMP-2. Molecular docking showed that N-terminal region of PILP-2 and PILP-3 fitted into the cleft around the active site of MMP-2 catalytic domain. In contrast to that of PILP-2, C-terminal region of PILP-3 was suggested to be in close contact with catalytic domain of MMP-2. Collectively, our data indicate that PILP-3 is a MMP-2 inhibitor and shows an activity in inhibiting migration and invasion of neuroblastoma, and suggest that intact C-terminus is crucial to the activities of PILP-3.

Original languageEnglish
Pages (from-to)353-360
Number of pages8
JournalToxicon
Volume55
Issue number2-3
DOIs
Publication statusPublished - Feb 2010
Externally publishedYes

Fingerprint

Bungarus
Metalloproteases
Protease Inhibitors
Neuroblastoma
Proteins
Catalytic Domain
Tumors
Amino Acids
Molecular modeling
Amino Acid Substitution
Protein C
Cell Movement
Neoplasms
Assays
Substitution reactions

Keywords

  • Cell invasion
  • Cell migration
  • Metalloproteinase inhibitor
  • Molecular model
  • Protease inhibitor

ASJC Scopus subject areas

  • Toxicology

Cite this

@article{e60db8ed67a44ee7938aa86de8e2c3c6,
title = "Structure-function studies on inhibitory activity of Bungarus multicinctus protease inhibitor-like protein on matrix metalloprotease-2, and invasion and migration of human neuroblastoma SK-N-SH cells",
abstract = "In view of the findings that several Kunitz-type protein inhibitors suppress tumor invasion and metastasis, the aim of the present study is to explore whether Bungarus multicinctus protease inhibitor-like protein-2 (PILP-2) and PILP-3 exhibit anti-tumor activity. Although approximately 28{\%} of amino acid substitutions occurred between PILP-2 and PILP-3, molecular modeling suggested that PILP-2 and PILP-3 shared similar folded structures. Unlike PILP-2, PILP-3 showed a notable activity in abolishing migration and invasion of human neuroblastoma SK-N-SH cells. The ability of PILP-3 to inhibit matrix metalloprotease-2 (MMP-2) activity was higher than that of PILP-2. Pull-down assay revealed protein-protein interaction between PILP-3 and MMP-2. In contrast to mutation on N-terminal region, replacement of amino acids at C-terminus attenuated notably the ability of PILP-3 to inhibit cell invasion, cell migration and MMP-2 activity as well as the binding capability of PILP-3 with MMP-2. Molecular docking showed that N-terminal region of PILP-2 and PILP-3 fitted into the cleft around the active site of MMP-2 catalytic domain. In contrast to that of PILP-2, C-terminal region of PILP-3 was suggested to be in close contact with catalytic domain of MMP-2. Collectively, our data indicate that PILP-3 is a MMP-2 inhibitor and shows an activity in inhibiting migration and invasion of neuroblastoma, and suggest that intact C-terminus is crucial to the activities of PILP-3.",
keywords = "Cell invasion, Cell migration, Metalloproteinase inhibitor, Molecular model, Protease inhibitor",
author = "Chou, {Wen Min} and Liu, {Wen Hsin} and Chen, {Ku Chung} and Chang, {Long Sen}",
year = "2010",
month = "2",
doi = "10.1016/j.toxicon.2009.08.012",
language = "English",
volume = "55",
pages = "353--360",
journal = "Toxicon",
issn = "0041-0101",
publisher = "Elsevier Limited",
number = "2-3",

}

TY - JOUR

T1 - Structure-function studies on inhibitory activity of Bungarus multicinctus protease inhibitor-like protein on matrix metalloprotease-2, and invasion and migration of human neuroblastoma SK-N-SH cells

AU - Chou, Wen Min

AU - Liu, Wen Hsin

AU - Chen, Ku Chung

AU - Chang, Long Sen

PY - 2010/2

Y1 - 2010/2

N2 - In view of the findings that several Kunitz-type protein inhibitors suppress tumor invasion and metastasis, the aim of the present study is to explore whether Bungarus multicinctus protease inhibitor-like protein-2 (PILP-2) and PILP-3 exhibit anti-tumor activity. Although approximately 28% of amino acid substitutions occurred between PILP-2 and PILP-3, molecular modeling suggested that PILP-2 and PILP-3 shared similar folded structures. Unlike PILP-2, PILP-3 showed a notable activity in abolishing migration and invasion of human neuroblastoma SK-N-SH cells. The ability of PILP-3 to inhibit matrix metalloprotease-2 (MMP-2) activity was higher than that of PILP-2. Pull-down assay revealed protein-protein interaction between PILP-3 and MMP-2. In contrast to mutation on N-terminal region, replacement of amino acids at C-terminus attenuated notably the ability of PILP-3 to inhibit cell invasion, cell migration and MMP-2 activity as well as the binding capability of PILP-3 with MMP-2. Molecular docking showed that N-terminal region of PILP-2 and PILP-3 fitted into the cleft around the active site of MMP-2 catalytic domain. In contrast to that of PILP-2, C-terminal region of PILP-3 was suggested to be in close contact with catalytic domain of MMP-2. Collectively, our data indicate that PILP-3 is a MMP-2 inhibitor and shows an activity in inhibiting migration and invasion of neuroblastoma, and suggest that intact C-terminus is crucial to the activities of PILP-3.

AB - In view of the findings that several Kunitz-type protein inhibitors suppress tumor invasion and metastasis, the aim of the present study is to explore whether Bungarus multicinctus protease inhibitor-like protein-2 (PILP-2) and PILP-3 exhibit anti-tumor activity. Although approximately 28% of amino acid substitutions occurred between PILP-2 and PILP-3, molecular modeling suggested that PILP-2 and PILP-3 shared similar folded structures. Unlike PILP-2, PILP-3 showed a notable activity in abolishing migration and invasion of human neuroblastoma SK-N-SH cells. The ability of PILP-3 to inhibit matrix metalloprotease-2 (MMP-2) activity was higher than that of PILP-2. Pull-down assay revealed protein-protein interaction between PILP-3 and MMP-2. In contrast to mutation on N-terminal region, replacement of amino acids at C-terminus attenuated notably the ability of PILP-3 to inhibit cell invasion, cell migration and MMP-2 activity as well as the binding capability of PILP-3 with MMP-2. Molecular docking showed that N-terminal region of PILP-2 and PILP-3 fitted into the cleft around the active site of MMP-2 catalytic domain. In contrast to that of PILP-2, C-terminal region of PILP-3 was suggested to be in close contact with catalytic domain of MMP-2. Collectively, our data indicate that PILP-3 is a MMP-2 inhibitor and shows an activity in inhibiting migration and invasion of neuroblastoma, and suggest that intact C-terminus is crucial to the activities of PILP-3.

KW - Cell invasion

KW - Cell migration

KW - Metalloproteinase inhibitor

KW - Molecular model

KW - Protease inhibitor

UR - http://www.scopus.com/inward/record.url?scp=72749097878&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72749097878&partnerID=8YFLogxK

U2 - 10.1016/j.toxicon.2009.08.012

DO - 10.1016/j.toxicon.2009.08.012

M3 - Article

C2 - 19706303

AN - SCOPUS:72749097878

VL - 55

SP - 353

EP - 360

JO - Toxicon

JF - Toxicon

SN - 0041-0101

IS - 2-3

ER -