Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla

Yen Hsien Lee, Min Chien Tsai, Tzu Ling Li, Yu Wen E Dai, Shang Cheng Huang, Ling Ling Hwang

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

New Findings: What is the central question of this study? Our previous study demonstrates that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs), and a lower OX2R protein level was detected in their RVLM. The present study aims to explore the mechanisms underlying elevated orexinergic activity in the RVLM of SHRs, compared with their normotensive counterparts, Wistar-Kyoto rats. What is the main finding and its importance? Increased orexinergic input into the RVLM and enhanced OX2R responsiveness in the RVLM, which was mainly mediated by augmented OX2R-neuronal nitric oxide synthase signalling, may underlie the elevated OX2R activity within the RVLM of SHRs. Abstract Our previous study showed that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs). Herein, we investigated the mechanism(s) underlying the elevated OX2R activity. The following results were found. (i) More hypothalamic orexin A-immunoreactive (OXA-IR) cells existed in SHRs than in Wistar-Kyoto (WKY) rats at either 4 (2217 ± 43 versus 1809 ± 69) or 16 weeks of age (1829 ± 59 versus 1230 ± 84). The number of OXA-IR cells that project to the RVLM was higher in 16-week-old SHRs than in WKY rats (91 ± 11 versus 52 ± 11). (ii) Higher numbers of OXA-IR and RVLM-projecting OXA-IR cells were found in the dorsomedial and perifornical hypothalamus of 16-week-old SHRs. (iii) Spontaneously hypertensive rats had higher levels of orexin A and B in the hypothalamus and higher levels of orexin A in the RVLM than did WKY rats. (iv) Unilateral intra-RVLM application of OX2R agonist, orexin A or [Ala11,d-Leu15]-orexin B (50 pmol) induced a larger pressor response in SHRs than in WKY rats. (v) Intra-RVLM pretreatment with a neuronal nitric oxide synthase (NOS) inhibitor, 7-nitro-indazole (2.5 pmol), or a soluble guanylate cyclase inhibitor, methylene blue (250 pmol), reducedthe intra-RVLM [Ala11,d-Leu15]-orexin B-induced pressor response in both WKY rats and SHRs. In contrast, an inducible NOS inhibitor, aminoguanidine (100 pmol), was ineffective. (vi) Neuronal NOS was co-expressed with OX2R in RVLM neurons. In conclusion, increased orexinergic input and enhanced OX2R-neuronal NOS signalling may underlie elevated OX2R activity in the RVLM and contribute to the pathophysiology of hypertension in SHRs.

Original languageEnglish
Pages (from-to)993-1007
Number of pages15
JournalExperimental Physiology
Volume100
Issue number9
DOIs
Publication statusPublished - Sep 1 2015

Fingerprint

Orexin Receptors
Inbred SHR Rats
Hypothalamus
Nitric Oxide
Neurons
Inbred WKY Rats
Nitric Oxide Synthase Type I
Hypertension
Orexins
Methylene Blue
Nitric Oxide Synthase Type II

ASJC Scopus subject areas

  • Physiology

Cite this

Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla. / Lee, Yen Hsien; Tsai, Min Chien; Li, Tzu Ling; Dai, Yu Wen E; Huang, Shang Cheng; Hwang, Ling Ling.

In: Experimental Physiology, Vol. 100, No. 9, 01.09.2015, p. 993-1007.

Research output: Contribution to journalArticle

@article{8bf1b6fa8fd343bb98cb7a394b3d15c5,
title = "Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla",
abstract = "New Findings: What is the central question of this study? Our previous study demonstrates that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs), and a lower OX2R protein level was detected in their RVLM. The present study aims to explore the mechanisms underlying elevated orexinergic activity in the RVLM of SHRs, compared with their normotensive counterparts, Wistar-Kyoto rats. What is the main finding and its importance? Increased orexinergic input into the RVLM and enhanced OX2R responsiveness in the RVLM, which was mainly mediated by augmented OX2R-neuronal nitric oxide synthase signalling, may underlie the elevated OX2R activity within the RVLM of SHRs. Abstract Our previous study showed that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs). Herein, we investigated the mechanism(s) underlying the elevated OX2R activity. The following results were found. (i) More hypothalamic orexin A-immunoreactive (OXA-IR) cells existed in SHRs than in Wistar-Kyoto (WKY) rats at either 4 (2217 ± 43 versus 1809 ± 69) or 16 weeks of age (1829 ± 59 versus 1230 ± 84). The number of OXA-IR cells that project to the RVLM was higher in 16-week-old SHRs than in WKY rats (91 ± 11 versus 52 ± 11). (ii) Higher numbers of OXA-IR and RVLM-projecting OXA-IR cells were found in the dorsomedial and perifornical hypothalamus of 16-week-old SHRs. (iii) Spontaneously hypertensive rats had higher levels of orexin A and B in the hypothalamus and higher levels of orexin A in the RVLM than did WKY rats. (iv) Unilateral intra-RVLM application of OX2R agonist, orexin A or [Ala11,d-Leu15]-orexin B (50 pmol) induced a larger pressor response in SHRs than in WKY rats. (v) Intra-RVLM pretreatment with a neuronal nitric oxide synthase (NOS) inhibitor, 7-nitro-indazole (2.5 pmol), or a soluble guanylate cyclase inhibitor, methylene blue (250 pmol), reducedthe intra-RVLM [Ala11,d-Leu15]-orexin B-induced pressor response in both WKY rats and SHRs. In contrast, an inducible NOS inhibitor, aminoguanidine (100 pmol), was ineffective. (vi) Neuronal NOS was co-expressed with OX2R in RVLM neurons. In conclusion, increased orexinergic input and enhanced OX2R-neuronal NOS signalling may underlie elevated OX2R activity in the RVLM and contribute to the pathophysiology of hypertension in SHRs.",
author = "Lee, {Yen Hsien} and Tsai, {Min Chien} and Li, {Tzu Ling} and Dai, {Yu Wen E} and Huang, {Shang Cheng} and Hwang, {Ling Ling}",
year = "2015",
month = "9",
day = "1",
doi = "10.1113/EP085016",
language = "English",
volume = "100",
pages = "993--1007",
journal = "Experimental Physiology",
issn = "0958-0670",
publisher = "Wiley-Blackwell",
number = "9",

}

TY - JOUR

T1 - Spontaneously hypertensive rats have more orexin neurons in the hypothalamus and enhanced orexinergic input and orexin 2 receptor-associated nitric oxide signalling in the rostral ventrolateral medulla

AU - Lee, Yen Hsien

AU - Tsai, Min Chien

AU - Li, Tzu Ling

AU - Dai, Yu Wen E

AU - Huang, Shang Cheng

AU - Hwang, Ling Ling

PY - 2015/9/1

Y1 - 2015/9/1

N2 - New Findings: What is the central question of this study? Our previous study demonstrates that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs), and a lower OX2R protein level was detected in their RVLM. The present study aims to explore the mechanisms underlying elevated orexinergic activity in the RVLM of SHRs, compared with their normotensive counterparts, Wistar-Kyoto rats. What is the main finding and its importance? Increased orexinergic input into the RVLM and enhanced OX2R responsiveness in the RVLM, which was mainly mediated by augmented OX2R-neuronal nitric oxide synthase signalling, may underlie the elevated OX2R activity within the RVLM of SHRs. Abstract Our previous study showed that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs). Herein, we investigated the mechanism(s) underlying the elevated OX2R activity. The following results were found. (i) More hypothalamic orexin A-immunoreactive (OXA-IR) cells existed in SHRs than in Wistar-Kyoto (WKY) rats at either 4 (2217 ± 43 versus 1809 ± 69) or 16 weeks of age (1829 ± 59 versus 1230 ± 84). The number of OXA-IR cells that project to the RVLM was higher in 16-week-old SHRs than in WKY rats (91 ± 11 versus 52 ± 11). (ii) Higher numbers of OXA-IR and RVLM-projecting OXA-IR cells were found in the dorsomedial and perifornical hypothalamus of 16-week-old SHRs. (iii) Spontaneously hypertensive rats had higher levels of orexin A and B in the hypothalamus and higher levels of orexin A in the RVLM than did WKY rats. (iv) Unilateral intra-RVLM application of OX2R agonist, orexin A or [Ala11,d-Leu15]-orexin B (50 pmol) induced a larger pressor response in SHRs than in WKY rats. (v) Intra-RVLM pretreatment with a neuronal nitric oxide synthase (NOS) inhibitor, 7-nitro-indazole (2.5 pmol), or a soluble guanylate cyclase inhibitor, methylene blue (250 pmol), reducedthe intra-RVLM [Ala11,d-Leu15]-orexin B-induced pressor response in both WKY rats and SHRs. In contrast, an inducible NOS inhibitor, aminoguanidine (100 pmol), was ineffective. (vi) Neuronal NOS was co-expressed with OX2R in RVLM neurons. In conclusion, increased orexinergic input and enhanced OX2R-neuronal NOS signalling may underlie elevated OX2R activity in the RVLM and contribute to the pathophysiology of hypertension in SHRs.

AB - New Findings: What is the central question of this study? Our previous study demonstrates that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs), and a lower OX2R protein level was detected in their RVLM. The present study aims to explore the mechanisms underlying elevated orexinergic activity in the RVLM of SHRs, compared with their normotensive counterparts, Wistar-Kyoto rats. What is the main finding and its importance? Increased orexinergic input into the RVLM and enhanced OX2R responsiveness in the RVLM, which was mainly mediated by augmented OX2R-neuronal nitric oxide synthase signalling, may underlie the elevated OX2R activity within the RVLM of SHRs. Abstract Our previous study showed that elevated orexin 2 receptor (OX2R) activity within the rostral ventrolateral medulla (RVLM) contributes to hypertension in spontaneously hypertensive rats (SHRs). Herein, we investigated the mechanism(s) underlying the elevated OX2R activity. The following results were found. (i) More hypothalamic orexin A-immunoreactive (OXA-IR) cells existed in SHRs than in Wistar-Kyoto (WKY) rats at either 4 (2217 ± 43 versus 1809 ± 69) or 16 weeks of age (1829 ± 59 versus 1230 ± 84). The number of OXA-IR cells that project to the RVLM was higher in 16-week-old SHRs than in WKY rats (91 ± 11 versus 52 ± 11). (ii) Higher numbers of OXA-IR and RVLM-projecting OXA-IR cells were found in the dorsomedial and perifornical hypothalamus of 16-week-old SHRs. (iii) Spontaneously hypertensive rats had higher levels of orexin A and B in the hypothalamus and higher levels of orexin A in the RVLM than did WKY rats. (iv) Unilateral intra-RVLM application of OX2R agonist, orexin A or [Ala11,d-Leu15]-orexin B (50 pmol) induced a larger pressor response in SHRs than in WKY rats. (v) Intra-RVLM pretreatment with a neuronal nitric oxide synthase (NOS) inhibitor, 7-nitro-indazole (2.5 pmol), or a soluble guanylate cyclase inhibitor, methylene blue (250 pmol), reducedthe intra-RVLM [Ala11,d-Leu15]-orexin B-induced pressor response in both WKY rats and SHRs. In contrast, an inducible NOS inhibitor, aminoguanidine (100 pmol), was ineffective. (vi) Neuronal NOS was co-expressed with OX2R in RVLM neurons. In conclusion, increased orexinergic input and enhanced OX2R-neuronal NOS signalling may underlie elevated OX2R activity in the RVLM and contribute to the pathophysiology of hypertension in SHRs.

UR - http://www.scopus.com/inward/record.url?scp=84940586889&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84940586889&partnerID=8YFLogxK

U2 - 10.1113/EP085016

DO - 10.1113/EP085016

M3 - Article

C2 - 26096870

AN - SCOPUS:84940586889

VL - 100

SP - 993

EP - 1007

JO - Experimental Physiology

JF - Experimental Physiology

SN - 0958-0670

IS - 9

ER -