Abstract

Application of autologous serum eye drops (SEDs) is a recognized means to treat severe dry-eye syndrome (DES). Due to the inconvenience and difficulty of preparing SEDs from some patients, producing SEDs from allogeneic blood donations is gaining popularity. A major safety concern associated with allogeneic blood is virus transmission. We therefore herein evaluated the possibility of applying a solvent/detergent (S/D) treatment to inactivate viruses and studied the impacts of such treatment of SEDs to resolve DES in a rabbit model. Sera prepared from the blood of five rabbits were pooled and divided into two subpools. One was untreated (SEDs), while the other was virally-inactivated with 1% Tri-n-butyl phosphate/1% Triton X-45 at 31°C for 1 h (S/D-SEDs). DES was induced in rabbits using 0.1% benzalkonium chloride (BAC). Rabbits were divided into five groups of two rabbits each. One group was untreated (control), three were treated twice daily for 3 weeks using PBS, SEDs, or S/D-SEDs, and the last received an additional 0.1% BAC (as the negative control). The DES condition was determined by measuring aqueous tear secretion (Schirmer's test), corneal fluorescein staining, a corneal histologic examination, TUNEL stain apoptosis, and corneal inflammatory marker (tumor necrosis factor-α, interleukin (IL)-1β, IL- 8, and IL-6) expressions. We first confirmed that SEDs and S/D-SEDs had similar protein profiles and transforming growth factor (TGF)-β contents. Animal experiments showed that tear secretion did not significantly differ between the SED and S/D-SED groups but was significantly higher than in the PBS group. Eye fluorescein staining revealed dramatic improvements in epithelial defects in groups treated with SEDs or S/D-SEDs, and hematoxylin/ eosin staining revealed microscopic epithelial layers similar to those of the untreated controls. Inflammatory markers and TUNEL studies showed that healthy epithelium had been restored in groups treated with SEDs or S/D-SEDs. In conclusion, this preclinical study supports the possibility of using S/D virally inactivated SEDs to treat DES and restore a normal epithelium.

Original languageEnglish
Article numbere0153573
JournalPLoS One
Volume11
Issue number4
DOIs
Publication statusPublished - Apr 1 2016

Fingerprint

Dry Eye Syndromes
Ophthalmic Solutions
blood serum
detergents
Detergents
epithelium
Epithelium
eyes
rabbits
Rabbits
Serum
Benzalkonium Compounds
benzalkonium chloride
dry eye syndrome
Blood
In Situ Nick-End Labeling
Fluorescein
fluorescein
Viruses
Staining and Labeling

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Solvent/detergent virally inactivated serum eye drops restore healthy ocular epithelium in a rabbit model of dry-eye syndrome. / Tseng, Ching Li; Chen, Zhi Yu; Renn, Ting Yi; Hsiao, Shun Hung; Burnouf, Thierry.

In: PLoS One, Vol. 11, No. 4, e0153573, 01.04.2016.

Research output: Contribution to journalArticle

@article{641bb2c80a9c4e77b41e4db696c1c54e,
title = "Solvent/detergent virally inactivated serum eye drops restore healthy ocular epithelium in a rabbit model of dry-eye syndrome",
abstract = "Application of autologous serum eye drops (SEDs) is a recognized means to treat severe dry-eye syndrome (DES). Due to the inconvenience and difficulty of preparing SEDs from some patients, producing SEDs from allogeneic blood donations is gaining popularity. A major safety concern associated with allogeneic blood is virus transmission. We therefore herein evaluated the possibility of applying a solvent/detergent (S/D) treatment to inactivate viruses and studied the impacts of such treatment of SEDs to resolve DES in a rabbit model. Sera prepared from the blood of five rabbits were pooled and divided into two subpools. One was untreated (SEDs), while the other was virally-inactivated with 1{\%} Tri-n-butyl phosphate/1{\%} Triton X-45 at 31°C for 1 h (S/D-SEDs). DES was induced in rabbits using 0.1{\%} benzalkonium chloride (BAC). Rabbits were divided into five groups of two rabbits each. One group was untreated (control), three were treated twice daily for 3 weeks using PBS, SEDs, or S/D-SEDs, and the last received an additional 0.1{\%} BAC (as the negative control). The DES condition was determined by measuring aqueous tear secretion (Schirmer's test), corneal fluorescein staining, a corneal histologic examination, TUNEL stain apoptosis, and corneal inflammatory marker (tumor necrosis factor-α, interleukin (IL)-1β, IL- 8, and IL-6) expressions. We first confirmed that SEDs and S/D-SEDs had similar protein profiles and transforming growth factor (TGF)-β contents. Animal experiments showed that tear secretion did not significantly differ between the SED and S/D-SED groups but was significantly higher than in the PBS group. Eye fluorescein staining revealed dramatic improvements in epithelial defects in groups treated with SEDs or S/D-SEDs, and hematoxylin/ eosin staining revealed microscopic epithelial layers similar to those of the untreated controls. Inflammatory markers and TUNEL studies showed that healthy epithelium had been restored in groups treated with SEDs or S/D-SEDs. In conclusion, this preclinical study supports the possibility of using S/D virally inactivated SEDs to treat DES and restore a normal epithelium.",
author = "Tseng, {Ching Li} and Chen, {Zhi Yu} and Renn, {Ting Yi} and Hsiao, {Shun Hung} and Thierry Burnouf",
year = "2016",
month = "4",
day = "1",
doi = "10.1371/journal.pone.0153573",
language = "English",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "4",

}

TY - JOUR

T1 - Solvent/detergent virally inactivated serum eye drops restore healthy ocular epithelium in a rabbit model of dry-eye syndrome

AU - Tseng, Ching Li

AU - Chen, Zhi Yu

AU - Renn, Ting Yi

AU - Hsiao, Shun Hung

AU - Burnouf, Thierry

PY - 2016/4/1

Y1 - 2016/4/1

N2 - Application of autologous serum eye drops (SEDs) is a recognized means to treat severe dry-eye syndrome (DES). Due to the inconvenience and difficulty of preparing SEDs from some patients, producing SEDs from allogeneic blood donations is gaining popularity. A major safety concern associated with allogeneic blood is virus transmission. We therefore herein evaluated the possibility of applying a solvent/detergent (S/D) treatment to inactivate viruses and studied the impacts of such treatment of SEDs to resolve DES in a rabbit model. Sera prepared from the blood of five rabbits were pooled and divided into two subpools. One was untreated (SEDs), while the other was virally-inactivated with 1% Tri-n-butyl phosphate/1% Triton X-45 at 31°C for 1 h (S/D-SEDs). DES was induced in rabbits using 0.1% benzalkonium chloride (BAC). Rabbits were divided into five groups of two rabbits each. One group was untreated (control), three were treated twice daily for 3 weeks using PBS, SEDs, or S/D-SEDs, and the last received an additional 0.1% BAC (as the negative control). The DES condition was determined by measuring aqueous tear secretion (Schirmer's test), corneal fluorescein staining, a corneal histologic examination, TUNEL stain apoptosis, and corneal inflammatory marker (tumor necrosis factor-α, interleukin (IL)-1β, IL- 8, and IL-6) expressions. We first confirmed that SEDs and S/D-SEDs had similar protein profiles and transforming growth factor (TGF)-β contents. Animal experiments showed that tear secretion did not significantly differ between the SED and S/D-SED groups but was significantly higher than in the PBS group. Eye fluorescein staining revealed dramatic improvements in epithelial defects in groups treated with SEDs or S/D-SEDs, and hematoxylin/ eosin staining revealed microscopic epithelial layers similar to those of the untreated controls. Inflammatory markers and TUNEL studies showed that healthy epithelium had been restored in groups treated with SEDs or S/D-SEDs. In conclusion, this preclinical study supports the possibility of using S/D virally inactivated SEDs to treat DES and restore a normal epithelium.

AB - Application of autologous serum eye drops (SEDs) is a recognized means to treat severe dry-eye syndrome (DES). Due to the inconvenience and difficulty of preparing SEDs from some patients, producing SEDs from allogeneic blood donations is gaining popularity. A major safety concern associated with allogeneic blood is virus transmission. We therefore herein evaluated the possibility of applying a solvent/detergent (S/D) treatment to inactivate viruses and studied the impacts of such treatment of SEDs to resolve DES in a rabbit model. Sera prepared from the blood of five rabbits were pooled and divided into two subpools. One was untreated (SEDs), while the other was virally-inactivated with 1% Tri-n-butyl phosphate/1% Triton X-45 at 31°C for 1 h (S/D-SEDs). DES was induced in rabbits using 0.1% benzalkonium chloride (BAC). Rabbits were divided into five groups of two rabbits each. One group was untreated (control), three were treated twice daily for 3 weeks using PBS, SEDs, or S/D-SEDs, and the last received an additional 0.1% BAC (as the negative control). The DES condition was determined by measuring aqueous tear secretion (Schirmer's test), corneal fluorescein staining, a corneal histologic examination, TUNEL stain apoptosis, and corneal inflammatory marker (tumor necrosis factor-α, interleukin (IL)-1β, IL- 8, and IL-6) expressions. We first confirmed that SEDs and S/D-SEDs had similar protein profiles and transforming growth factor (TGF)-β contents. Animal experiments showed that tear secretion did not significantly differ between the SED and S/D-SED groups but was significantly higher than in the PBS group. Eye fluorescein staining revealed dramatic improvements in epithelial defects in groups treated with SEDs or S/D-SEDs, and hematoxylin/ eosin staining revealed microscopic epithelial layers similar to those of the untreated controls. Inflammatory markers and TUNEL studies showed that healthy epithelium had been restored in groups treated with SEDs or S/D-SEDs. In conclusion, this preclinical study supports the possibility of using S/D virally inactivated SEDs to treat DES and restore a normal epithelium.

UR - http://www.scopus.com/inward/record.url?scp=84964645641&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84964645641&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0153573

DO - 10.1371/journal.pone.0153573

M3 - Article

C2 - 27100624

AN - SCOPUS:84964645641

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 4

M1 - e0153573

ER -