Small intestine hexose transport in experimental diabetes: Increased transporter mRNA and protein expression in enterocytes

Charles F. Burant, Susan Flink, Alexander M. DePaoli, Janet Chen, Wen Sen Lee, Matthias A. Hediger, John B. Buse, Eugene B. Chang

Research output: Contribution to journalArticlepeer-review

120 Citations (Scopus)

Abstract

The effect of insulinopenic diabetes on the expression of glucose transporters in the small intestine was investigated. Enterocytes were sequentially isolated from jejunum and ileum of normal fed rats, streptozotocin-diabetic rats, and diabetic rats treated with insulin. Facilitative glucose transporter (GLUT) 2, GLUT5, and sodium-dependent glucose transporter 1 protein content was increased from 1.5- to 6-fold in enterocytes isolated from diabetic animals in both jejunum and ileum. Insulin was able to reverse the increase in transporter protein expression seen after induction of diabetes. There was a four- to eightfold increase in the amount of enterocyte glucose transporter mRNA after diabetes with greater changes in sodium-dependent glucose transporter 1 and GLUT2 than in GLUT5 levels. In situ hybridization showed that after the induction of diabetes there was new hybridization in lower villus and crypt enterocytes that was reversed by insulin treatment. Thus, the increase in total hexose transport caused by diabetes is due to a premature expression of hexose transporters by enterocytes along the crypt-villus axis, causing a cumulative increase in enterocyte transporter protein during maturation. These changes are likely to represent an adaptive response by the organism to increase nutrient absorption in a perceived state of tissue starvation. These adaptive changes may lead to exacerbation of hyperglycemia in uncontrolled diabetes.

Original languageEnglish
Pages (from-to)578-585
Number of pages8
JournalJournal of Clinical Investigation
Volume93
Issue number2
Publication statusPublished - Feb 1994
Externally publishedYes

Keywords

  • Diabetes
  • Fructose
  • Gene regulation
  • Glucose transport
  • Intestine

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Small intestine hexose transport in experimental diabetes: Increased transporter mRNA and protein expression in enterocytes'. Together they form a unique fingerprint.

Cite this