Abstract
Background. The pathophysiology of Taiwanese congenital bilateral absence of the vas deferens (CBAVD) is different from that in Caucasians. In particular, major cystic fibrosis transmembrane conductance regulator (CFTR) mutations and cystic fibrosis are absent in the former. Instead, deficiency in solute carrier family 9 sodium/hydrogen exchanger isoform 3 (SLC9A3) may play a role by generating obstructive azoospermia and degraded epithelial structure in the reproductive tract. Objectives. The objective of the study was to test whether SLC9A3 variants cause Taiwanese CBAVD. Materials and Methods. Six-month-old Slc9a3-/- male mice were used to evaluate the effect of long-term SLC9A3 loss on the reproductive system. A case-control cohort of 29 men with CBAVD and 32 fertile men were genotyped for SLC9A3 variants. Results. SLC9A3 was expressed and localized in the apical border of the epithelium of human vas deferens and glandular epithelium of the seminal vesicle. SLC9A3 deficiency specifically induces atrophy of vas deferens and unfolding of seminal vesicle mucosa in mice. Loss of SLC9A3 increased the incidence of CBAVD in humans from 3.1% to 37.9% (p < 0.001). Up to 75.9% of CBAVD patients carry at least one variant in either SLC9A3 or CFTR. Discussion. Our findings build upon previous data associated with CBAVD pathogenesis. Here, we now report for the first time an association between CBAVD and loss of SLC9A3 and propose that specific defects in the reproductive duct due to SLC9A3 variants drive CBAVD development. Conclusion. The data implicate loss of SLC9A3 as a basis of Taiwanese CBAVD and highlight SLC9A3 function in reproduction.
Original language | English |
---|---|
Article number | 3562719 |
Journal | BioMed Research International |
Volume | 2019 |
DOIs | |
Publication status | Published - Jan 1 2019 |
Fingerprint
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
Cite this
SLC9A3 Affects Vas Deferens Development and Associates with Taiwanese Congenital Bilateral Absence of the Vas Deferens. / Wu, Yi No; Chen, Kuo Chiang; Wu, Chien Chih; Lin, Ying Hung; Chiang, Han Sun.
In: BioMed Research International, Vol. 2019, 3562719, 01.01.2019.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - SLC9A3 Affects Vas Deferens Development and Associates with Taiwanese Congenital Bilateral Absence of the Vas Deferens
AU - Wu, Yi No
AU - Chen, Kuo Chiang
AU - Wu, Chien Chih
AU - Lin, Ying Hung
AU - Chiang, Han Sun
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Background. The pathophysiology of Taiwanese congenital bilateral absence of the vas deferens (CBAVD) is different from that in Caucasians. In particular, major cystic fibrosis transmembrane conductance regulator (CFTR) mutations and cystic fibrosis are absent in the former. Instead, deficiency in solute carrier family 9 sodium/hydrogen exchanger isoform 3 (SLC9A3) may play a role by generating obstructive azoospermia and degraded epithelial structure in the reproductive tract. Objectives. The objective of the study was to test whether SLC9A3 variants cause Taiwanese CBAVD. Materials and Methods. Six-month-old Slc9a3-/- male mice were used to evaluate the effect of long-term SLC9A3 loss on the reproductive system. A case-control cohort of 29 men with CBAVD and 32 fertile men were genotyped for SLC9A3 variants. Results. SLC9A3 was expressed and localized in the apical border of the epithelium of human vas deferens and glandular epithelium of the seminal vesicle. SLC9A3 deficiency specifically induces atrophy of vas deferens and unfolding of seminal vesicle mucosa in mice. Loss of SLC9A3 increased the incidence of CBAVD in humans from 3.1% to 37.9% (p < 0.001). Up to 75.9% of CBAVD patients carry at least one variant in either SLC9A3 or CFTR. Discussion. Our findings build upon previous data associated with CBAVD pathogenesis. Here, we now report for the first time an association between CBAVD and loss of SLC9A3 and propose that specific defects in the reproductive duct due to SLC9A3 variants drive CBAVD development. Conclusion. The data implicate loss of SLC9A3 as a basis of Taiwanese CBAVD and highlight SLC9A3 function in reproduction.
AB - Background. The pathophysiology of Taiwanese congenital bilateral absence of the vas deferens (CBAVD) is different from that in Caucasians. In particular, major cystic fibrosis transmembrane conductance regulator (CFTR) mutations and cystic fibrosis are absent in the former. Instead, deficiency in solute carrier family 9 sodium/hydrogen exchanger isoform 3 (SLC9A3) may play a role by generating obstructive azoospermia and degraded epithelial structure in the reproductive tract. Objectives. The objective of the study was to test whether SLC9A3 variants cause Taiwanese CBAVD. Materials and Methods. Six-month-old Slc9a3-/- male mice were used to evaluate the effect of long-term SLC9A3 loss on the reproductive system. A case-control cohort of 29 men with CBAVD and 32 fertile men were genotyped for SLC9A3 variants. Results. SLC9A3 was expressed and localized in the apical border of the epithelium of human vas deferens and glandular epithelium of the seminal vesicle. SLC9A3 deficiency specifically induces atrophy of vas deferens and unfolding of seminal vesicle mucosa in mice. Loss of SLC9A3 increased the incidence of CBAVD in humans from 3.1% to 37.9% (p < 0.001). Up to 75.9% of CBAVD patients carry at least one variant in either SLC9A3 or CFTR. Discussion. Our findings build upon previous data associated with CBAVD pathogenesis. Here, we now report for the first time an association between CBAVD and loss of SLC9A3 and propose that specific defects in the reproductive duct due to SLC9A3 variants drive CBAVD development. Conclusion. The data implicate loss of SLC9A3 as a basis of Taiwanese CBAVD and highlight SLC9A3 function in reproduction.
UR - http://www.scopus.com/inward/record.url?scp=85063481453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063481453&partnerID=8YFLogxK
U2 - 10.1155/2019/3562719
DO - 10.1155/2019/3562719
M3 - Article
AN - SCOPUS:85063481453
VL - 2019
JO - BioMed Research International
JF - BioMed Research International
SN - 2314-6133
M1 - 3562719
ER -