Single-walled carbon nanotube coated antibacterial paper: Preparation and mechanistic study

Archana R. Deokar, Lih Yuan Lin, Chun Chao Chang, Yong Chien Ling

Research output: Contribution to journalArticle

39 Citations (Scopus)


Development of carbon nanotubes toward commercial antibacterial applications warrants the understanding of their interaction mechanism with bacterial cells. The antibacterial activity and mechanism of acid-functionalized single-walled carbon nanotube (AFSWCNT) coated paper was assessed for gram-positive Staphylococcus aureus and gram-negative Escherichia coli models of bacteria. Better activity towards gram-positive bacteria was observed, whereas the presence of an outer membrane makes gram-negative bacteria more resistant to cell membrane damage caused by AFSWCNTs. Based on measured cytoplasmic efflux materials of bacteria, X-ray photoelectron spectroscopy, and scanning transmission electron microscopy combined with electron energy-loss spectroscopy imaging studies, we found that the better antibacterial activity of AFSWCNTs toward gram-positive bacteria is attributed to not only direct physical contact and piercing action, but also molecular-scale interaction with surface functional groups of bacteria. The novel antibacterial mechanism of AFSWCNTs might bring a promising strategy to design new antibacterial materials against drug-resistant bacteria species.

Original languageEnglish
Pages (from-to)2639-2646
Number of pages8
JournalJournal of Materials Chemistry B
Issue number20
Publication statusPublished - May 28 2013

ASJC Scopus subject areas

  • Chemistry(all)
  • Biomedical Engineering
  • Medicine(all)
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Single-walled carbon nanotube coated antibacterial paper: Preparation and mechanistic study'. Together they form a unique fingerprint.

  • Cite this