Similar dose-dependence of motor neuron cell death caused by wild type human TDP-43 and mutants with ALS-associated amino acid substitutions

Lien Szu Wu, Wei Cheng Cheng, Che Kun James Shen

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Background: TDP-43, a multi-functional DNA/ RNA-binding protein encoded by the TARDBP gene, has emerged as a major patho-signature factor of the ubiquitinated intracellular inclusions (UBIs) in the diseased cells of a range of neurodegenerative diseases. Mutations in at least 9 different genes including TARDBP have been identified in ALS with TDP-43 (+)-UBIs. Thus far, the pathogenic role(s) of the more than 30 ALS-associated mutations in the TARDBP gene has not been well defined. Results: By transient DNA transfection studies, we show that exogenously expressed human TDP-43 (hTDP-43), either wild type (WT) or 2 different ALS mutant (MT) forms, could cause significantly higher apoptotic death rate of a mouse spinal motor neuron-like cell line (NSC34) than other types of cells, e.g. mouse neuronal Neuro2a and human fibroblast HEK293T cells. Furthermore, at the same plasmid DNA dose(s) used for transfection, the percentages of NSC34 cell death caused by the 2 exogenously expressed hTDP-43 mutants are all higher than that caused by the WT hTDP-43. Significantly, the above observations are correlated with higher steady-state levels of the mutant hTDP-43 proteins as well as their stabilities than the WT. Conclusions: Based on these data and previous transgenic TDP-43 studies in animals or cell cultures, we suggest that one major common consequence of the different ALS-associated TDP-43 mutations is the stabilization of the hTDP-43 polypeptide. The resulting elevation of the steady state level of hTDP-43 in combination with the relatively low tolerance of the spinal motor neurons to the increased amount of hTDP-43 lead to the neurodegeneration and pathogenesis of ALS, and of diseases with TDP-43 proteinopathies in general.

Original languageEnglish
Article number33
JournalJournal of Biomedical Science
Volume20
Issue number1
DOIs
Publication statusPublished - Jun 3 2013
Externally publishedYes

Keywords

  • ALS Mutations
  • Apoptosis
  • Protein stability
  • Spinal motor neuron cells
  • TDP-43

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Similar dose-dependence of motor neuron cell death caused by wild type human TDP-43 and mutants with ALS-associated amino acid substitutions'. Together they form a unique fingerprint.

  • Cite this