TY - JOUR
T1 - Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression
AU - Liu, J.
AU - Bi, X.
AU - Chen, T.
AU - Zhang, Q.
AU - Wang, S. X.
AU - Chiu, J. J.
AU - Liu, G. S.
AU - Zhang, Y.
AU - Bu, P.
AU - Jiang, F.
N1 - Funding Information:
Acknowledgements. We thank Ms. Xiao Wu and Ms. Erhan Hu for technical assistances. This work was partially supported by research grants from the National 973 Basic Research Program of China (2013CB530700 and 2012CB518603), National Natural Science Foundation of China (31471087), National High-tech Research and Development Program of China (No. 2012AA02A510), and State Program of National Natural Science Foundation of China for Innovative Research Group (No.81021001).
Publisher Copyright:
© 2015 Macmillan Publishers Limited All rights reserved.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow, but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action. Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression. Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel mechanism by which laminar flow produces its vascular-protective actions.
AB - Disturbed cell autophagy is found in various cardiovascular disease conditions. Biomechanical stimuli induced by laminar blood flow have important protective actions against the development of various vascular diseases. However, the impacts and underlying mechanisms of shear stress on the autophagic process in vascular endothelial cells (ECs) are not entirely understood. Here we investigated the impacts of shear stress on autophagy in human vascular ECs. We found that shear stress induced by laminar flow, but not that by oscillatory or low-magnitude flow, promoted autophagy. Time-course analysis and flow cessation experiments confirmed that this effect was not a transient adaptive stress response but appeared to be a sustained physiological action. Flow had no effect on the mammalian target of rapamycin-ULK pathway, whereas it significantly upregulated Sirt1 expression. Inhibition of Sirt1 blunted shear stress-induced autophagy. Overexpression of wild-type Sirt1, but not the deacetylase-dead mutant, was sufficient to induce autophagy in ECs. Using both of gain- and loss-of-function experiments, we showed that Sirt1-dependent activation of FoxO1 was critical in mediating shear stress-induced autophagy. Shear stress also induced deacetylation of Atg5 and Atg7. Moreover, shear stress-induced Sirt1 expression and autophagy were redox dependent, whereas Sirt1 might act as a redox-sensitive transducer mediating reactive oxygen species-elicited autophagy. Functionally, we demonstrated that flow-conditioned cells are more resistant to oxidant-induced cell injury, and this cytoprotective effect was abolished after inhibition of autophagy. In summary, these results suggest that Sirt1-mediated autophagy in ECs may be a novel mechanism by which laminar flow produces its vascular-protective actions.
UR - http://www.scopus.com/inward/record.url?scp=84954306887&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84954306887&partnerID=8YFLogxK
U2 - 10.1038/cddis.2015.193
DO - 10.1038/cddis.2015.193
M3 - Article
C2 - 26181207
AN - SCOPUS:84954306887
SN - 2041-4889
VL - 6
JO - Cell Death and Disease
JF - Cell Death and Disease
IS - 7
M1 - e1827
ER -