Rest-stimulus interaction in the brain: A review

Georg Northoff, Pengmin Qin, Takashi Nakao

Research output: Contribution to journalArticle

142 Citations (Scopus)

Abstract

Studies in animals and humans have demonstrated intrinsic activity in the brain during the resting state. The concept of the default-mode network (DMN) - a set of brain regions in which resting-state activity (RSA) activity is reduced in response to external stimuli - recently raised much controversy concerning the psychological correlates of RSA. However, it remains unclear how RSA interacts with stimulus-induced activity. Here we review studies in humans and animals that address how RSA interacts with stimulus-induced activity; we also discuss, conversely, how stimulus-induced activity can modulate RSA. Psychologically, the rest-stimulus interaction is relevant to predicting subsequent behavioral and mental states. We conclude that a better understanding of the rest-stimulus interaction is likely to be crucial to the elucidation of the brain's contribution to mental states. © 2010 Elsevier Ltd.
Original languageEnglish
Pages (from-to)277-284
Number of pages8
JournalTrends in Neurosciences
Volume33
Issue number6
DOIs
Publication statusPublished - 2010
Externally publishedYes

Fingerprint

Brain
Psychology

Keywords

  • behavior
  • brain function
  • brain region
  • decision making
  • human
  • mental performance
  • neuromodulation
  • nonhuman
  • prediction
  • priority journal
  • rest
  • review
  • stimulus response
  • working memory
  • anatomy and histology
  • animal
  • brain
  • brain mapping
  • motor activity
  • nerve cell network
  • nerve tract
  • physiology
  • psychology
  • Animals
  • Brain
  • Brain Mapping
  • Humans
  • Motor Activity
  • Nerve Net
  • Neural Pathways
  • Rest

Cite this

Rest-stimulus interaction in the brain: A review. / Northoff, Georg; Qin, Pengmin; Nakao, Takashi.

In: Trends in Neurosciences, Vol. 33, No. 6, 2010, p. 277-284.

Research output: Contribution to journalArticle

@article{050d9098109e425db7e043709c9311b8,
title = "Rest-stimulus interaction in the brain: A review",
abstract = "Studies in animals and humans have demonstrated intrinsic activity in the brain during the resting state. The concept of the default-mode network (DMN) - a set of brain regions in which resting-state activity (RSA) activity is reduced in response to external stimuli - recently raised much controversy concerning the psychological correlates of RSA. However, it remains unclear how RSA interacts with stimulus-induced activity. Here we review studies in humans and animals that address how RSA interacts with stimulus-induced activity; we also discuss, conversely, how stimulus-induced activity can modulate RSA. Psychologically, the rest-stimulus interaction is relevant to predicting subsequent behavioral and mental states. We conclude that a better understanding of the rest-stimulus interaction is likely to be crucial to the elucidation of the brain's contribution to mental states. {\circledC} 2010 Elsevier Ltd.",
keywords = "behavior, brain function, brain region, decision making, human, mental performance, neuromodulation, nonhuman, prediction, priority journal, rest, review, stimulus response, working memory, anatomy and histology, animal, brain, brain mapping, motor activity, nerve cell network, nerve tract, physiology, psychology, Animals, Brain, Brain Mapping, Humans, Motor Activity, Nerve Net, Neural Pathways, Rest",
author = "Georg Northoff and Pengmin Qin and Takashi Nakao",
note = "被引用次數:89 Export Date: 31 March 2016 CODEN: TNSCD 通訊地址: Northoff, G.; 1Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; 電子郵件: georg.northoff@rohcg.on.ca 參考文獻: Broyd, S.J., Default-mode brain dysfunction in mental disorders: a systematic review (2009) Neurosci. Biobehav. Rev., 33, pp. 279-296; Buckner, R.L., The brain's default network: anatomy, function, and relevance to disease (2008) Ann. N. Y. Acad. Sci., 1124, pp. 1-38; Morcom, A.M., Fletcher, P.C., Does the brain have a baseline? Why we should be resisting a rest (2007) Neuroimage, 37, pp. 1073-1082; Raichle, M.E., A default mode of brain function (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 676-682; Greicius, M.D., Menon, V., Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation (2004) J. Cogn. Neurosci., 16, pp. 1484-1492; Fox, M.D., The human brain is intrinsically organized into dynamic, anticorrelated functional networks (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 9673-9678; Fransson, P., Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis (2005) Hum. Brain Mapp., 26, pp. 15-29; Beckmann, C.F., Investigations into resting-state connectivity using independent component analysis (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci., 360, pp. 1001-1013; Damoiseaux, J.S., Consistent resting-state networks across healthy subjects (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13848-13853; Panksepp, J., (1998) Affective Neuroscience, , Oxford University Press; Rilling, J.K., Effect of menstrual cycle on resting brain metabolism in female rhesus monkeys (2008) Neuroreport, 19, pp. 537-541; Vincent, J.L., Intrinsic functional architecture in the anaesthetized monkey brain (2007) Nature, 447, pp. 83-86; Freeman, W.J., Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates (2003) Hum. Brain Mapp., 19, pp. 248-272; Shulman, R.G., Energetic basis of brain activity: implications for neuroimaging (2004) Trends Neurosci., 27, pp. 489-495; Shulman, R.G., A BOLD search for baseline (2007) Neuroimage, 36, pp. 277-281; Lorincz, M.L., ATP-dependent infra-slow (<0.1Hz) oscillations in thalamic networks (2009) PLoS One, 4, pp. e4447; Brown, T.M., Piggins, H.D., Electrophysiology of the suprachiasmatic circadian clock (2007) Prog. Neurobiol., 82, pp. 229-255; Peters, Y., Prefrontal cortical up states are synchronized with ventral tegmental area activity (2004) Synapse, 52, pp. 143-152; Arieli, A., Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses (1996) Science, 273, pp. 1868-1871; Buzs{\'a}ki, G., Draguhn, A., Neuronal oscillations in cortical networks (2004) Science, 304, pp. 1926-1929; Edelman, G.M., Naturalizing consciousness: a theoretical framework (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 5520-5524; Fries, P., The gamma cycle (2007) Trends Neurosci., 30, pp. 309-316; Fries, P., Modulation of oscillatory neuronal synchronization by selective visual attention (2001) Science, 291, pp. 1560-1563; Koch, C., (2004), The quest for consciousness: A neurobiological approachLlinas, R.R., The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function (1988) Science, 242, pp. 1654-1664; Shulman, R.G., Baseline brain energy supports the state of consciousness (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 11096-11101; Boly, M., Baseline brain activity fluctuations predict somatosensory perception in humans (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 12187-12192; Maandag, N.J., Energetics of neuronal signaling and fMRI activity (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 20546-20551; Northoff, G., GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI (2007) Nat. Neurosci., 10, pp. 1515-1517; Llinas, R.R., Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 449-454; Barry, R.J., Event-related potentials in the auditory oddball as a function of EEG alpha phase at stimulus onset (2004) Clin. Neurophysiol., 115, pp. 2593-2601; Eijsden, P., Neurophysiology of functional imaging (2009) Neuroimage, 45, pp. 1047-1054; Buzs{\'a}ki, G., Inhibition and brain work (2007) Neuron, 56, pp. 771-783; Jacob, T.C., GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition (2008) Nat. Rev. Neurosci., 9, pp. 331-343; Fox, M.D., Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses (2006) Nat. Neurosci., 9, pp. 23-25; Fox, M.D., Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior (2007) Neuron, 56, pp. 171-184; Muthukumaraswamy, S.D., Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8356-8361; Haig, A.R., Gordon, E., Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time (1998) Psychophysiology, 35, pp. 591-595; Basar, E., Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes (1998) Electroencephalogr. Clin. Neurophysiol., 108, pp. 101-109; Haig, A.R., Gordon, E., EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP component (1998) Int. J. Neurosci., 93, pp. 101-115; Jansen, B.H., Brandt, M.E., The effect of the phase of prestimulus alpha activity on the averaged visual evoked response (1991) Electroencephalogr. Clin. Neurophysiol., 80, pp. 241-250; Kruglikov, S.Y., Schiff, S.J., Interplay of electroencephalogram phase and auditory-evoked neural activity (2003) J. Neurosci., 23, pp. 10122-10127; Makeig, S., Dynamic brain sources of visual evoked responses (2002) Science, 295, pp. 690-694; Varela, F.J., Perceptual framing and cortical alpha rhythm (1981) Neuropsychologia, 19, pp. 675-686; Smallwood, J., Going AWOL in the brain: mind wandering reduces cortical analysis of external events (2008) J. Cogn. Neurosci., 20, pp. 458-469; Fiser, J., Small modulation of ongoing cortical dynamics by sensory input during natural vision (2004) Nature, 431, pp. 573-578; Kenet, T., Spontaneously emerging cortical representations of visual attributes (2003) Nature, 425, pp. 954-956; Tsodyks, M., Linking spontaneous activity of single cortical neurons and the underlying functional architecture (1999) Science, 286, pp. 1943-1946; Sapir, A., Brain signals for spatial attention predict performance in a motion discrimination task (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 17810-17815; Weissman, D.H., The neural bases of momentary lapses in attention (2006) Nat. Neurosci., 9, pp. 971-978; Busch, N.A., The phase of ongoing EEG oscillations predicts visual perception (2009) J. Neurosci., 29, pp. 7869-7876; Smith, M.L., Perceptual moments of conscious visual experience inferred from oscillatory brain activity (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5626-5631; Berry, S.D., Thompson, R.F., Prediction of learning rate from the hippocampal electroencephalogram (1978) Science, 200, pp. 1298-1300; Pyka, M., Impact of working memory load on FMRI resting state pattern in subsequent resting phases (2009) PLoS One, 4, pp. e7198; Lowe, M.J., Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections (2000) Neuroimage, 12, pp. 582-587; Schneider, F., The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures (2008) Neuroscience, 157, pp. 120-131; Lewis, C.M., Learning sculpts the spontaneous activity of the resting human brain (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 17558-17563; Han, F., Reverberation of recent visual experience in spontaneous cortical waves (2008) Neuron, 60, pp. 321-327; Newton, A.T., Task demand modulation of steady-state functional connectivity to primary motor cortex (2007) Hum. Brain Mapp., 28, pp. 663-672; Albert, N.B., The resting human brain and motor learning (2009) Curr. Biol., 19, pp. 1023-1027; Christoff, K., Experience sampling during fMRI reveals default network and executive system contributions to mind wandering (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8719-8724; Mason, M.F., Wandering minds: the default network and stimulus-independent thought (2007) Science, 315, pp. 393-395; Fair, D.A., The maturing architecture of the brain's default network (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 4028-4032; Fair, D.A., Development of distinct control networks through segregation and integration (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13507-13512; Fransson, P., Resting-state networks in the infant brain (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 15531-15536; Alcaro, A., Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach (2010) Neurosci. Biobehav. Rev., 34, pp. 592-605; Grimm, S., Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects (2009) Neuropsychopharmacology, 34 (4), pp. 932-943; Fox, M.D., The global signal and observed anticorrelated resting state brain networks (2009) J. Neurophysiol., 101, pp. 3270-3283; Northoff, G., Self-referential processing in our brain - a meta-analysis of imaging studies on the self (2006) Neuroimage, 31, pp. 440-457; He, B.J., Raichle, M.E., The fMRI signal, slow cortical potential and consciousness (2009) Trends Cogn. Sci., 13, pp. 302-309",
year = "2010",
doi = "10.1016/j.tins.2010.02.006",
language = "English",
volume = "33",
pages = "277--284",
journal = "Trends in Neurosciences",
issn = "0378-5912",
publisher = "Elsevier Limited",
number = "6",

}

TY - JOUR

T1 - Rest-stimulus interaction in the brain: A review

AU - Northoff, Georg

AU - Qin, Pengmin

AU - Nakao, Takashi

N1 - 被引用次數:89 Export Date: 31 March 2016 CODEN: TNSCD 通訊地址: Northoff, G.; 1Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; 電子郵件: georg.northoff@rohcg.on.ca 參考文獻: Broyd, S.J., Default-mode brain dysfunction in mental disorders: a systematic review (2009) Neurosci. Biobehav. Rev., 33, pp. 279-296; Buckner, R.L., The brain's default network: anatomy, function, and relevance to disease (2008) Ann. N. Y. Acad. Sci., 1124, pp. 1-38; Morcom, A.M., Fletcher, P.C., Does the brain have a baseline? Why we should be resisting a rest (2007) Neuroimage, 37, pp. 1073-1082; Raichle, M.E., A default mode of brain function (2001) Proc. Natl. Acad. Sci. U. S. A., 98, pp. 676-682; Greicius, M.D., Menon, V., Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation (2004) J. Cogn. Neurosci., 16, pp. 1484-1492; Fox, M.D., The human brain is intrinsically organized into dynamic, anticorrelated functional networks (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 9673-9678; Fransson, P., Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis (2005) Hum. Brain Mapp., 26, pp. 15-29; Beckmann, C.F., Investigations into resting-state connectivity using independent component analysis (2005) Philos. Trans. R. Soc. Lond. B Biol. Sci., 360, pp. 1001-1013; Damoiseaux, J.S., Consistent resting-state networks across healthy subjects (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13848-13853; Panksepp, J., (1998) Affective Neuroscience, , Oxford University Press; Rilling, J.K., Effect of menstrual cycle on resting brain metabolism in female rhesus monkeys (2008) Neuroreport, 19, pp. 537-541; Vincent, J.L., Intrinsic functional architecture in the anaesthetized monkey brain (2007) Nature, 447, pp. 83-86; Freeman, W.J., Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates (2003) Hum. Brain Mapp., 19, pp. 248-272; Shulman, R.G., Energetic basis of brain activity: implications for neuroimaging (2004) Trends Neurosci., 27, pp. 489-495; Shulman, R.G., A BOLD search for baseline (2007) Neuroimage, 36, pp. 277-281; Lorincz, M.L., ATP-dependent infra-slow (<0.1Hz) oscillations in thalamic networks (2009) PLoS One, 4, pp. e4447; Brown, T.M., Piggins, H.D., Electrophysiology of the suprachiasmatic circadian clock (2007) Prog. Neurobiol., 82, pp. 229-255; Peters, Y., Prefrontal cortical up states are synchronized with ventral tegmental area activity (2004) Synapse, 52, pp. 143-152; Arieli, A., Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses (1996) Science, 273, pp. 1868-1871; Buzsáki, G., Draguhn, A., Neuronal oscillations in cortical networks (2004) Science, 304, pp. 1926-1929; Edelman, G.M., Naturalizing consciousness: a theoretical framework (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 5520-5524; Fries, P., The gamma cycle (2007) Trends Neurosci., 30, pp. 309-316; Fries, P., Modulation of oscillatory neuronal synchronization by selective visual attention (2001) Science, 291, pp. 1560-1563; Koch, C., (2004), The quest for consciousness: A neurobiological approachLlinas, R.R., The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function (1988) Science, 242, pp. 1654-1664; Shulman, R.G., Baseline brain energy supports the state of consciousness (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 11096-11101; Boly, M., Baseline brain activity fluctuations predict somatosensory perception in humans (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 12187-12192; Maandag, N.J., Energetics of neuronal signaling and fMRI activity (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 20546-20551; Northoff, G., GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI (2007) Nat. Neurosci., 10, pp. 1515-1517; Llinas, R.R., Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 449-454; Barry, R.J., Event-related potentials in the auditory oddball as a function of EEG alpha phase at stimulus onset (2004) Clin. Neurophysiol., 115, pp. 2593-2601; Eijsden, P., Neurophysiology of functional imaging (2009) Neuroimage, 45, pp. 1047-1054; Buzsáki, G., Inhibition and brain work (2007) Neuron, 56, pp. 771-783; Jacob, T.C., GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition (2008) Nat. Rev. Neurosci., 9, pp. 331-343; Fox, M.D., Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses (2006) Nat. Neurosci., 9, pp. 23-25; Fox, M.D., Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior (2007) Neuron, 56, pp. 171-184; Muthukumaraswamy, S.D., Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8356-8361; Haig, A.R., Gordon, E., Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time (1998) Psychophysiology, 35, pp. 591-595; Basar, E., Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes (1998) Electroencephalogr. Clin. Neurophysiol., 108, pp. 101-109; Haig, A.R., Gordon, E., EEG alpha phase at stimulus onset significantly affects the amplitude of the P3 ERP component (1998) Int. J. Neurosci., 93, pp. 101-115; Jansen, B.H., Brandt, M.E., The effect of the phase of prestimulus alpha activity on the averaged visual evoked response (1991) Electroencephalogr. Clin. Neurophysiol., 80, pp. 241-250; Kruglikov, S.Y., Schiff, S.J., Interplay of electroencephalogram phase and auditory-evoked neural activity (2003) J. Neurosci., 23, pp. 10122-10127; Makeig, S., Dynamic brain sources of visual evoked responses (2002) Science, 295, pp. 690-694; Varela, F.J., Perceptual framing and cortical alpha rhythm (1981) Neuropsychologia, 19, pp. 675-686; Smallwood, J., Going AWOL in the brain: mind wandering reduces cortical analysis of external events (2008) J. Cogn. Neurosci., 20, pp. 458-469; Fiser, J., Small modulation of ongoing cortical dynamics by sensory input during natural vision (2004) Nature, 431, pp. 573-578; Kenet, T., Spontaneously emerging cortical representations of visual attributes (2003) Nature, 425, pp. 954-956; Tsodyks, M., Linking spontaneous activity of single cortical neurons and the underlying functional architecture (1999) Science, 286, pp. 1943-1946; Sapir, A., Brain signals for spatial attention predict performance in a motion discrimination task (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 17810-17815; Weissman, D.H., The neural bases of momentary lapses in attention (2006) Nat. Neurosci., 9, pp. 971-978; Busch, N.A., The phase of ongoing EEG oscillations predicts visual perception (2009) J. Neurosci., 29, pp. 7869-7876; Smith, M.L., Perceptual moments of conscious visual experience inferred from oscillatory brain activity (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 5626-5631; Berry, S.D., Thompson, R.F., Prediction of learning rate from the hippocampal electroencephalogram (1978) Science, 200, pp. 1298-1300; Pyka, M., Impact of working memory load on FMRI resting state pattern in subsequent resting phases (2009) PLoS One, 4, pp. e7198; Lowe, M.J., Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections (2000) Neuroimage, 12, pp. 582-587; Schneider, F., The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures (2008) Neuroscience, 157, pp. 120-131; Lewis, C.M., Learning sculpts the spontaneous activity of the resting human brain (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 17558-17563; Han, F., Reverberation of recent visual experience in spontaneous cortical waves (2008) Neuron, 60, pp. 321-327; Newton, A.T., Task demand modulation of steady-state functional connectivity to primary motor cortex (2007) Hum. Brain Mapp., 28, pp. 663-672; Albert, N.B., The resting human brain and motor learning (2009) Curr. Biol., 19, pp. 1023-1027; Christoff, K., Experience sampling during fMRI reveals default network and executive system contributions to mind wandering (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 8719-8724; Mason, M.F., Wandering minds: the default network and stimulus-independent thought (2007) Science, 315, pp. 393-395; Fair, D.A., The maturing architecture of the brain's default network (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 4028-4032; Fair, D.A., Development of distinct control networks through segregation and integration (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13507-13512; Fransson, P., Resting-state networks in the infant brain (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 15531-15536; Alcaro, A., Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach (2010) Neurosci. Biobehav. Rev., 34, pp. 592-605; Grimm, S., Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects (2009) Neuropsychopharmacology, 34 (4), pp. 932-943; Fox, M.D., The global signal and observed anticorrelated resting state brain networks (2009) J. Neurophysiol., 101, pp. 3270-3283; Northoff, G., Self-referential processing in our brain - a meta-analysis of imaging studies on the self (2006) Neuroimage, 31, pp. 440-457; He, B.J., Raichle, M.E., The fMRI signal, slow cortical potential and consciousness (2009) Trends Cogn. Sci., 13, pp. 302-309

PY - 2010

Y1 - 2010

N2 - Studies in animals and humans have demonstrated intrinsic activity in the brain during the resting state. The concept of the default-mode network (DMN) - a set of brain regions in which resting-state activity (RSA) activity is reduced in response to external stimuli - recently raised much controversy concerning the psychological correlates of RSA. However, it remains unclear how RSA interacts with stimulus-induced activity. Here we review studies in humans and animals that address how RSA interacts with stimulus-induced activity; we also discuss, conversely, how stimulus-induced activity can modulate RSA. Psychologically, the rest-stimulus interaction is relevant to predicting subsequent behavioral and mental states. We conclude that a better understanding of the rest-stimulus interaction is likely to be crucial to the elucidation of the brain's contribution to mental states. © 2010 Elsevier Ltd.

AB - Studies in animals and humans have demonstrated intrinsic activity in the brain during the resting state. The concept of the default-mode network (DMN) - a set of brain regions in which resting-state activity (RSA) activity is reduced in response to external stimuli - recently raised much controversy concerning the psychological correlates of RSA. However, it remains unclear how RSA interacts with stimulus-induced activity. Here we review studies in humans and animals that address how RSA interacts with stimulus-induced activity; we also discuss, conversely, how stimulus-induced activity can modulate RSA. Psychologically, the rest-stimulus interaction is relevant to predicting subsequent behavioral and mental states. We conclude that a better understanding of the rest-stimulus interaction is likely to be crucial to the elucidation of the brain's contribution to mental states. © 2010 Elsevier Ltd.

KW - behavior

KW - brain function

KW - brain region

KW - decision making

KW - human

KW - mental performance

KW - neuromodulation

KW - nonhuman

KW - prediction

KW - priority journal

KW - rest

KW - review

KW - stimulus response

KW - working memory

KW - anatomy and histology

KW - animal

KW - brain

KW - brain mapping

KW - motor activity

KW - nerve cell network

KW - nerve tract

KW - physiology

KW - psychology

KW - Animals

KW - Brain

KW - Brain Mapping

KW - Humans

KW - Motor Activity

KW - Nerve Net

KW - Neural Pathways

KW - Rest

U2 - 10.1016/j.tins.2010.02.006

DO - 10.1016/j.tins.2010.02.006

M3 - Article

C2 - 20226543

VL - 33

SP - 277

EP - 284

JO - Trends in Neurosciences

JF - Trends in Neurosciences

SN - 0378-5912

IS - 6

ER -