Prostacyclin-induced peroxisome proliferator-activated receptor-α translocation attenuates NF-κB and TNF-α activation after renal ischemia-reperfusion injury

Hsi Hsien Chen, Tzen Wen Chen, Heng Lin

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARα in I/R-induced kidney injury. PPAR-α reduced the NF-κB-induced overexpression of TNF-α and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-α activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-κB activation. By comparison, I/R-induced injury was exacerbated in PPAR-α knockout mice. This indicated that PPAR-α attenuated renal I/R injury via NF-κB-induced TNF-α overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-α translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-α pathway attenuated TNF-α promoter activity by binding to NF-κB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-α production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-α from the cytosol into the nucleus and attenuates NF-κB-induced TNF-α activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-α, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.

Original languageEnglish
JournalAmerican Journal of Physiology - Renal Physiology
Volume297
Issue number4
DOIs
Publication statusPublished - Oct 2009

Fingerprint

Peroxisome Proliferator-Activated Receptors
Epoprostenol
Reperfusion Injury
Kidney
Epoprostenol Receptors
Caspase 3
Cytosol
Reperfusion
Ischemia
Caspase 8
Docosahexaenoic Acids
Adenoviridae
Knockout Mice
Urea
Cultured Cells
Creatinine
Anti-Inflammatory Agents
Nitrogen
Cell Count
Apoptosis

Keywords

  • Arachidonic acid
  • cAMP
  • Caspase
  • Docosahexaenoic acid
  • IP receptor

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

@article{920d549eb03549c290a0077d9a5690c9,
title = "Prostacyclin-induced peroxisome proliferator-activated receptor-α translocation attenuates NF-κB and TNF-α activation after renal ischemia-reperfusion injury",
abstract = "Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARα in I/R-induced kidney injury. PPAR-α reduced the NF-κB-induced overexpression of TNF-α and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-α activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-κB activation. By comparison, I/R-induced injury was exacerbated in PPAR-α knockout mice. This indicated that PPAR-α attenuated renal I/R injury via NF-κB-induced TNF-α overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-α translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-α pathway attenuated TNF-α promoter activity by binding to NF-κB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-α production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-α from the cytosol into the nucleus and attenuates NF-κB-induced TNF-α activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-α, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.",
keywords = "Arachidonic acid, cAMP, Caspase, Docosahexaenoic acid, IP receptor",
author = "Chen, {Hsi Hsien} and Chen, {Tzen Wen} and Heng Lin",
year = "2009",
month = "10",
doi = "10.1152/ajprenal.00057.2009",
language = "English",
volume = "297",
journal = "American Journal of Physiology - Renal Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Prostacyclin-induced peroxisome proliferator-activated receptor-α translocation attenuates NF-κB and TNF-α activation after renal ischemia-reperfusion injury

AU - Chen, Hsi Hsien

AU - Chen, Tzen Wen

AU - Lin, Heng

PY - 2009/10

Y1 - 2009/10

N2 - Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARα in I/R-induced kidney injury. PPAR-α reduced the NF-κB-induced overexpression of TNF-α and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-α activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-κB activation. By comparison, I/R-induced injury was exacerbated in PPAR-α knockout mice. This indicated that PPAR-α attenuated renal I/R injury via NF-κB-induced TNF-α overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-α translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-α pathway attenuated TNF-α promoter activity by binding to NF-κB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-α production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-α from the cytosol into the nucleus and attenuates NF-κB-induced TNF-α activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-α, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.

AB - Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARα in I/R-induced kidney injury. PPAR-α reduced the NF-κB-induced overexpression of TNF-α and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-α activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-κB activation. By comparison, I/R-induced injury was exacerbated in PPAR-α knockout mice. This indicated that PPAR-α attenuated renal I/R injury via NF-κB-induced TNF-α overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-α translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-α pathway attenuated TNF-α promoter activity by binding to NF-κB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-α production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-α from the cytosol into the nucleus and attenuates NF-κB-induced TNF-α activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-α, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.

KW - Arachidonic acid

KW - cAMP

KW - Caspase

KW - Docosahexaenoic acid

KW - IP receptor

UR - http://www.scopus.com/inward/record.url?scp=70349648798&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349648798&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00057.2009

DO - 10.1152/ajprenal.00057.2009

M3 - Article

C2 - 19640904

AN - SCOPUS:70349648798

VL - 297

JO - American Journal of Physiology - Renal Physiology

JF - American Journal of Physiology - Renal Physiology

SN - 1931-857X

IS - 4

ER -