Abstract

The venom of the banded krait (Bungarus multicinctus), one of the major venomous species in Taiwan, contains neurotoxic venom proteins (B. multicinctus proteins) that pose a serious medical problem in tropical and subtropical countries. Even though horse-derived serum is an efficient therapy against snake venom, it is associated with a high cost and side effects. Therefore, developing a more cost-effective alternative treatment option is highly envisaged. In this study, chickens were immunized with B. multicinctus proteins, and polyclonal immunoglobulin Y (IgY) antibodies were purified from eggs. IgY showed a binding activity to B. multicinctus proteins that was similar to horse antivenin, and its titer in chickens lasted for at least 6 months. We constructed two antibody libraries by phage display antibody technology, which contain 1.0×107 and 2.9×108 transformants, respectively. After biopanning, a phage-based enzyme-linked immunosorbent assay (ELISA) indicated that specific clones were enriched. Thirty randomly selected clones expressing monoclonal single-chain variable-fragment (scFv) antibodies were classified into four groups with a short linker and two with a long linker. These selected scFv antibodies showed specific binding activities to B. multicinctus proteins but not to the venomous proteins of other snakes. Most importantly, polyclonal IgY demonstrated a similar neutralization efficiency as did horse-derived antivenin in mice that were injected with a minimum lethal dosage (MLD) of venom proteins. A mixture of several monoclonal anti-B. multicinctus scFv antibodies was also able to partially inhibit the lethal effect on mice. We profoundly believe that IgY and scFv antibodies can be applied in developing diagnostic agents for wound exudates and as an alternative treatment for snakebite envenomation in the future.

Original languageEnglish
Pages (from-to)6973-6982
Number of pages10
JournalApplied and Environmental Microbiology
Volume82
Issue number23
DOIs
Publication statusPublished - 2016

Fingerprint

Bungarus
venom
Single-Chain Antibodies
Snake Venoms
venoms
snake
Neutralizing Antibodies
neutralizing antibodies
snakes
antibody
immunoglobulin Y
Venoms
antibodies
protein
Horses
Antivenins
horse
proteins
Bacteriophages
Antibodies

ASJC Scopus subject areas

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology

Cite this

@article{c2af2afdb41c418cadf2286b1bf924b1,
title = "Production and characterization of neutralizing antibodies against Bungarus multicinctus snake venom",
abstract = "The venom of the banded krait (Bungarus multicinctus), one of the major venomous species in Taiwan, contains neurotoxic venom proteins (B. multicinctus proteins) that pose a serious medical problem in tropical and subtropical countries. Even though horse-derived serum is an efficient therapy against snake venom, it is associated with a high cost and side effects. Therefore, developing a more cost-effective alternative treatment option is highly envisaged. In this study, chickens were immunized with B. multicinctus proteins, and polyclonal immunoglobulin Y (IgY) antibodies were purified from eggs. IgY showed a binding activity to B. multicinctus proteins that was similar to horse antivenin, and its titer in chickens lasted for at least 6 months. We constructed two antibody libraries by phage display antibody technology, which contain 1.0×107 and 2.9×108 transformants, respectively. After biopanning, a phage-based enzyme-linked immunosorbent assay (ELISA) indicated that specific clones were enriched. Thirty randomly selected clones expressing monoclonal single-chain variable-fragment (scFv) antibodies were classified into four groups with a short linker and two with a long linker. These selected scFv antibodies showed specific binding activities to B. multicinctus proteins but not to the venomous proteins of other snakes. Most importantly, polyclonal IgY demonstrated a similar neutralization efficiency as did horse-derived antivenin in mice that were injected with a minimum lethal dosage (MLD) of venom proteins. A mixture of several monoclonal anti-B. multicinctus scFv antibodies was also able to partially inhibit the lethal effect on mice. We profoundly believe that IgY and scFv antibodies can be applied in developing diagnostic agents for wound exudates and as an alternative treatment for snakebite envenomation in the future.",
author = "Lee, {Chi Hsin} and Yu-Ching Lee and Sy-Jye Leu and Liang-Tzung Lin and Chiang, {Jen Ron} and Hsu, {Wei Jane} and Yi-Yuan Yang",
year = "2016",
doi = "10.1128/AEM.01876-16",
language = "English",
volume = "82",
pages = "6973--6982",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
publisher = "American Society for Microbiology",
number = "23",

}

TY - JOUR

T1 - Production and characterization of neutralizing antibodies against Bungarus multicinctus snake venom

AU - Lee, Chi Hsin

AU - Lee, Yu-Ching

AU - Leu, Sy-Jye

AU - Lin, Liang-Tzung

AU - Chiang, Jen Ron

AU - Hsu, Wei Jane

AU - Yang, Yi-Yuan

PY - 2016

Y1 - 2016

N2 - The venom of the banded krait (Bungarus multicinctus), one of the major venomous species in Taiwan, contains neurotoxic venom proteins (B. multicinctus proteins) that pose a serious medical problem in tropical and subtropical countries. Even though horse-derived serum is an efficient therapy against snake venom, it is associated with a high cost and side effects. Therefore, developing a more cost-effective alternative treatment option is highly envisaged. In this study, chickens were immunized with B. multicinctus proteins, and polyclonal immunoglobulin Y (IgY) antibodies were purified from eggs. IgY showed a binding activity to B. multicinctus proteins that was similar to horse antivenin, and its titer in chickens lasted for at least 6 months. We constructed two antibody libraries by phage display antibody technology, which contain 1.0×107 and 2.9×108 transformants, respectively. After biopanning, a phage-based enzyme-linked immunosorbent assay (ELISA) indicated that specific clones were enriched. Thirty randomly selected clones expressing monoclonal single-chain variable-fragment (scFv) antibodies were classified into four groups with a short linker and two with a long linker. These selected scFv antibodies showed specific binding activities to B. multicinctus proteins but not to the venomous proteins of other snakes. Most importantly, polyclonal IgY demonstrated a similar neutralization efficiency as did horse-derived antivenin in mice that were injected with a minimum lethal dosage (MLD) of venom proteins. A mixture of several monoclonal anti-B. multicinctus scFv antibodies was also able to partially inhibit the lethal effect on mice. We profoundly believe that IgY and scFv antibodies can be applied in developing diagnostic agents for wound exudates and as an alternative treatment for snakebite envenomation in the future.

AB - The venom of the banded krait (Bungarus multicinctus), one of the major venomous species in Taiwan, contains neurotoxic venom proteins (B. multicinctus proteins) that pose a serious medical problem in tropical and subtropical countries. Even though horse-derived serum is an efficient therapy against snake venom, it is associated with a high cost and side effects. Therefore, developing a more cost-effective alternative treatment option is highly envisaged. In this study, chickens were immunized with B. multicinctus proteins, and polyclonal immunoglobulin Y (IgY) antibodies were purified from eggs. IgY showed a binding activity to B. multicinctus proteins that was similar to horse antivenin, and its titer in chickens lasted for at least 6 months. We constructed two antibody libraries by phage display antibody technology, which contain 1.0×107 and 2.9×108 transformants, respectively. After biopanning, a phage-based enzyme-linked immunosorbent assay (ELISA) indicated that specific clones were enriched. Thirty randomly selected clones expressing monoclonal single-chain variable-fragment (scFv) antibodies were classified into four groups with a short linker and two with a long linker. These selected scFv antibodies showed specific binding activities to B. multicinctus proteins but not to the venomous proteins of other snakes. Most importantly, polyclonal IgY demonstrated a similar neutralization efficiency as did horse-derived antivenin in mice that were injected with a minimum lethal dosage (MLD) of venom proteins. A mixture of several monoclonal anti-B. multicinctus scFv antibodies was also able to partially inhibit the lethal effect on mice. We profoundly believe that IgY and scFv antibodies can be applied in developing diagnostic agents for wound exudates and as an alternative treatment for snakebite envenomation in the future.

UR - http://www.scopus.com/inward/record.url?scp=84996921035&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84996921035&partnerID=8YFLogxK

U2 - 10.1128/AEM.01876-16

DO - 10.1128/AEM.01876-16

M3 - Article

AN - SCOPUS:84996921035

VL - 82

SP - 6973

EP - 6982

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 23

ER -