Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface

Faith B. Davis, Shaker A. Mousa, Laura O'Connor, Seema Mohamed, Hung Yun Lin, H. James Cao, Paul J. Davis

Research output: Contribution to journalArticle

163 Citations (Scopus)

Abstract

The effects of thyroid hormone analogues on modulation of angiogenesis have been studied in the chick chorioallantoic membrane model. Generation of new blood vessels from existing vessels was increased 3-fold by either L-thyroxine (T4; 10-7 mol/L) or 3,5,3′-triiodo-L-thyronine (10-9 mol/L). T4-agarose reproduced the effects of T 4, and tetraiodothyroacetic acid (tetrac) inhibited the effects of both T4 and T4-agarose. Tetrac itself was inactive and is known to block actions of T4 on signal transduction that are initiated at the plasma membrane. T4 and basic fibroblast growth factor (FGF2) were comparably effective as inducers of angiogenesis. Low concentrations of FGF2 combined with submaximal concentrations of T4 produced an additive angiogenic response. Anti-FGF2 inhibited the angiogenic effect of T4. The proangiogenic effects of T4 and FGF2 were blocked by PD 98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor. Endothelial cells (ECV304) treated with T4 or FGF2 for 15 minutes demonstrated activation of MAPK, an effect inhibited by PD 98059 and the protein kinase C inhibitor CGP41251. Reverse transcription-polymerase chain reaction of RNA extracted from endothelial cells treated with T4 revealed increased abundance of FGF2 transcript at 6 to 48 hours, and after 72 hours, the medium of treated cells showed increased FGF2 content, an effect inhibited by PD 98059. Thus, thyroid hormone is shown to be a proangiogenic factor. This action, initiated at the plasma membrane, is MAPK dependent and mediated by FGF2.

Original languageEnglish
Pages (from-to)1500-1506
Number of pages7
JournalCirculation Research
Volume94
Issue number11
DOIs
Publication statusPublished - Jun 11 2004
Externally publishedYes

Fingerprint

Fibroblast Growth Factors
Fibroblast Growth Factor 2
Thyroid Hormones
Mitogen-Activated Protein Kinases
Protein Kinase Inhibitors
Sepharose
Endothelial Cells
Cell Membrane
Thyronines
Chorioallantoic Membrane
Protein C Inhibitor
Angiogenesis Inducing Agents
Thyroxine
Protein Kinase C
Reverse Transcription
Blood Vessels
Signal Transduction
RNA
Polymerase Chain Reaction

Keywords

  • Angiogenesis
  • Basic fibroblast growth factor
  • Endothelial cell
  • Mitogen-activated protein kinase
  • Thyroxine

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. / Davis, Faith B.; Mousa, Shaker A.; O'Connor, Laura; Mohamed, Seema; Lin, Hung Yun; Cao, H. James; Davis, Paul J.

In: Circulation Research, Vol. 94, No. 11, 11.06.2004, p. 1500-1506.

Research output: Contribution to journalArticle

Davis, Faith B. ; Mousa, Shaker A. ; O'Connor, Laura ; Mohamed, Seema ; Lin, Hung Yun ; Cao, H. James ; Davis, Paul J. / Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. In: Circulation Research. 2004 ; Vol. 94, No. 11. pp. 1500-1506.
@article{da81a7d7d3c44a1baa62c17050ef4d87,
title = "Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface",
abstract = "The effects of thyroid hormone analogues on modulation of angiogenesis have been studied in the chick chorioallantoic membrane model. Generation of new blood vessels from existing vessels was increased 3-fold by either L-thyroxine (T4; 10-7 mol/L) or 3,5,3′-triiodo-L-thyronine (10-9 mol/L). T4-agarose reproduced the effects of T 4, and tetraiodothyroacetic acid (tetrac) inhibited the effects of both T4 and T4-agarose. Tetrac itself was inactive and is known to block actions of T4 on signal transduction that are initiated at the plasma membrane. T4 and basic fibroblast growth factor (FGF2) were comparably effective as inducers of angiogenesis. Low concentrations of FGF2 combined with submaximal concentrations of T4 produced an additive angiogenic response. Anti-FGF2 inhibited the angiogenic effect of T4. The proangiogenic effects of T4 and FGF2 were blocked by PD 98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor. Endothelial cells (ECV304) treated with T4 or FGF2 for 15 minutes demonstrated activation of MAPK, an effect inhibited by PD 98059 and the protein kinase C inhibitor CGP41251. Reverse transcription-polymerase chain reaction of RNA extracted from endothelial cells treated with T4 revealed increased abundance of FGF2 transcript at 6 to 48 hours, and after 72 hours, the medium of treated cells showed increased FGF2 content, an effect inhibited by PD 98059. Thus, thyroid hormone is shown to be a proangiogenic factor. This action, initiated at the plasma membrane, is MAPK dependent and mediated by FGF2.",
keywords = "Angiogenesis, Basic fibroblast growth factor, Endothelial cell, Mitogen-activated protein kinase, Thyroxine",
author = "Davis, {Faith B.} and Mousa, {Shaker A.} and Laura O'Connor and Seema Mohamed and Lin, {Hung Yun} and Cao, {H. James} and Davis, {Paul J.}",
year = "2004",
month = "6",
day = "11",
doi = "10.1161/01.RES.0000130784.90237.4a",
language = "English",
volume = "94",
pages = "1500--1506",
journal = "Circulation Research",
issn = "0009-7330",
publisher = "Lippincott Williams and Wilkins",
number = "11",

}

TY - JOUR

T1 - Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface

AU - Davis, Faith B.

AU - Mousa, Shaker A.

AU - O'Connor, Laura

AU - Mohamed, Seema

AU - Lin, Hung Yun

AU - Cao, H. James

AU - Davis, Paul J.

PY - 2004/6/11

Y1 - 2004/6/11

N2 - The effects of thyroid hormone analogues on modulation of angiogenesis have been studied in the chick chorioallantoic membrane model. Generation of new blood vessels from existing vessels was increased 3-fold by either L-thyroxine (T4; 10-7 mol/L) or 3,5,3′-triiodo-L-thyronine (10-9 mol/L). T4-agarose reproduced the effects of T 4, and tetraiodothyroacetic acid (tetrac) inhibited the effects of both T4 and T4-agarose. Tetrac itself was inactive and is known to block actions of T4 on signal transduction that are initiated at the plasma membrane. T4 and basic fibroblast growth factor (FGF2) were comparably effective as inducers of angiogenesis. Low concentrations of FGF2 combined with submaximal concentrations of T4 produced an additive angiogenic response. Anti-FGF2 inhibited the angiogenic effect of T4. The proangiogenic effects of T4 and FGF2 were blocked by PD 98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor. Endothelial cells (ECV304) treated with T4 or FGF2 for 15 minutes demonstrated activation of MAPK, an effect inhibited by PD 98059 and the protein kinase C inhibitor CGP41251. Reverse transcription-polymerase chain reaction of RNA extracted from endothelial cells treated with T4 revealed increased abundance of FGF2 transcript at 6 to 48 hours, and after 72 hours, the medium of treated cells showed increased FGF2 content, an effect inhibited by PD 98059. Thus, thyroid hormone is shown to be a proangiogenic factor. This action, initiated at the plasma membrane, is MAPK dependent and mediated by FGF2.

AB - The effects of thyroid hormone analogues on modulation of angiogenesis have been studied in the chick chorioallantoic membrane model. Generation of new blood vessels from existing vessels was increased 3-fold by either L-thyroxine (T4; 10-7 mol/L) or 3,5,3′-triiodo-L-thyronine (10-9 mol/L). T4-agarose reproduced the effects of T 4, and tetraiodothyroacetic acid (tetrac) inhibited the effects of both T4 and T4-agarose. Tetrac itself was inactive and is known to block actions of T4 on signal transduction that are initiated at the plasma membrane. T4 and basic fibroblast growth factor (FGF2) were comparably effective as inducers of angiogenesis. Low concentrations of FGF2 combined with submaximal concentrations of T4 produced an additive angiogenic response. Anti-FGF2 inhibited the angiogenic effect of T4. The proangiogenic effects of T4 and FGF2 were blocked by PD 98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor. Endothelial cells (ECV304) treated with T4 or FGF2 for 15 minutes demonstrated activation of MAPK, an effect inhibited by PD 98059 and the protein kinase C inhibitor CGP41251. Reverse transcription-polymerase chain reaction of RNA extracted from endothelial cells treated with T4 revealed increased abundance of FGF2 transcript at 6 to 48 hours, and after 72 hours, the medium of treated cells showed increased FGF2 content, an effect inhibited by PD 98059. Thus, thyroid hormone is shown to be a proangiogenic factor. This action, initiated at the plasma membrane, is MAPK dependent and mediated by FGF2.

KW - Angiogenesis

KW - Basic fibroblast growth factor

KW - Endothelial cell

KW - Mitogen-activated protein kinase

KW - Thyroxine

UR - http://www.scopus.com/inward/record.url?scp=2942653137&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2942653137&partnerID=8YFLogxK

U2 - 10.1161/01.RES.0000130784.90237.4a

DO - 10.1161/01.RES.0000130784.90237.4a

M3 - Article

VL - 94

SP - 1500

EP - 1506

JO - Circulation Research

JF - Circulation Research

SN - 0009-7330

IS - 11

ER -