pH- and GSH-Sensitive Hyaluronic Acid-MP Conjugate Micelles for Intracellular Delivery of Doxorubicin to Colon Cancer Cells and Cancer Stem Cells

Tilahun Ayane Debele, Lu-Yi Yu, Cheng-Sheng Yang, Yao-An Shen, Chun-Liang Lo

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

A dual-sensitive polymeric drug conjugate (HA-SS-MP) was synthesized by conjugating hydrophobic 6-mercaptopurine (MP) to thiolated hyaluronic acid (HA) as the carrier and ligand to deliver doxorubicin (Dox) to parental colon cancer and colon cancer stem cells. Because of the amphiphilic nature of HA-SS-MP, it was self-assembled in the aqueous media, and Dox was physically encapsulated in the core of the micelles. The particle size and the zeta potential of the micelle were analyzed by dynamic light scattering (DLS), and the morphology of the micelle was investigated using transmission electron microscopy (TEM). Drug release study results revealed more drug release at pH 5.0 in the presence of GSH than that at the physiological pH value. The cytotoxicity of free Dox was slightly greater than that of Dox-loaded HA-SS-MP micelles. In vitro cytotoxicity of HA-SS-MP and Dox-loaded HA-SS-MP micelles was greater for cancer stem cells (HCT116-CSCs) than for parental HCT116 colon cancer cells and L929 normal fibroblast cells. The MTT and flow cytometry results confirmed that free HA competitively inhibited Dox-loaded HA-SS-MP uptake. Similarly, flow cytometry results revealed anti-CD44 antibody competitively inhibited cellular uptake of Rhodamine B isothiocyanate conjugated micelles, which confirms that the synthesized micelle is uptaken via CD44 receptor. Cell cycle analysis revealed that free drugs and Dox-loaded HA-SS-MP arrested parental HCT116 colon cancer cells at the S phase, while cell arrest was observed at the G0G1 phase in HCT116-CSCs. In addition, ex vivo biodistribution study showed that Dox-loaded HA-SS-MP micelles were accumulated more in the tumor region than in any other organ. Furthermore, the in vivo results revealed that Dox-loaded HA-SS-MP micelles exhibited more therapeutic efficacy than the free drugs in inhibiting tumor growth in BALB/C nude mice. Overall, the results suggested that the synthesized micelles could be promising as a stimuli carrier and ligand for delivering Dox to colon cancer cells and also to eradicate colon cancer stem cells.

Original languageEnglish
Pages (from-to)3725-3737
Number of pages13
JournalBiomacromolecules
Volume19
Issue number9
DOIs
Publication statusPublished - Sep 10 2018
Externally publishedYes

Fingerprint Dive into the research topics of 'pH- and GSH-Sensitive Hyaluronic Acid-MP Conjugate Micelles for Intracellular Delivery of Doxorubicin to Colon Cancer Cells and Cancer Stem Cells'. Together they form a unique fingerprint.

  • Cite this