Our steps toward subcutaneous transplantation of macro-encapsulated islets

Shoichiro Sumi, Sin Yu Yang, Priyadarshini Canning, Kai-Chiang Yang

Research output: Contribution to journalReview article

Abstract

Background: Diabetes mellitus (DM) can be cured or greatly ameliorated by adequate insulin secretion from a relatively small volume of insulin-producing cells. Cell encapsulation enables allo- and even xeno-geneic cell therapy without immunosuppression. However, recent clinical trials show that micro-encapsulated islets are not fully retrievable after transplantation. By contrast, macro-encapsulated islets can be retrieved when necessary. As to the transplantation site, subcutaneous tissue can be promising, if new strategy can overcome the hypoxic status due to hypovascularity. In this review article, we summarized the development of macro-encapsulated islets and approaches toward subcutaneous transplantation in our laboratory over more than two decades. Our results repeatedly show that islets and encapsulated islets can be transplanted in various sites including subcutaneous tissue after pretreatment of neovascular induction. As to macro-encapsulation devices, our laboratory firstly developed mesh-reinforced poly-vinyl alcohol (PVA) hydrogel tubes and bags; agarose-based encapsulation methods followed. After that, PVA macro-encapsulated islets were developed utilizing sol-gel transition of PVA solution through micro-crystallization, induced by freezing and thawing. Recently, we took advantage of the excellent histocompatibility of ethylene vinyl alcohol co-polymer (EVOH) to fabricate the highly porous EVOH bag. A unique macro-encapsulation ㄎdevice using thermosensitive chitosan-based gel in combination with the EVOH bag was developed. Most recently, we found that slow release of hepatocyte growth factor (HGF) from the chitosan gel can protect islets against initial hypoxic status and subsequently induce neovascularization in subcutaneous tissue to exert islet function, eliminating the necessity for neovascularization pretreatment.
Conclusions: Our recent study showed that retrievable and replaceable macro-encapsulated islets can be transplanted subcutaneously without pretreatment. Although further improvements may be necessary, this immunosuppression-free approach may replace intraportal islet transplantation in the near future.
Original languageEnglish
JournalOBM Transplantation
Publication statusPublished - 2019

Fingerprint

Subcutaneous Tissue
Transplantation
Alcohols
Gels
Chitosan
Immunosuppression
Insulin
Equipment and Supplies
Islets of Langerhans Transplantation
Histocompatibility
Hepatocyte Growth Factor
Hydrogel
Polymethyl Methacrylate
Cell- and Tissue-Based Therapy
Crystallization
Sepharose
Freezing
Diabetes Mellitus
Polymers
Clinical Trials

Cite this

Our steps toward subcutaneous transplantation of macro-encapsulated islets. / Sumi, Shoichiro; Yang, Sin Yu; Canning, Priyadarshini; Yang, Kai-Chiang.

In: OBM Transplantation, 2019.

Research output: Contribution to journalReview article

@article{6d664a0d2e18465ebd57f08daa82b69b,
title = "Our steps toward subcutaneous transplantation of macro-encapsulated islets",
abstract = "Background: Diabetes mellitus (DM) can be cured or greatly ameliorated by adequate insulin secretion from a relatively small volume of insulin-producing cells. Cell encapsulation enables allo- and even xeno-geneic cell therapy without immunosuppression. However, recent clinical trials show that micro-encapsulated islets are not fully retrievable after transplantation. By contrast, macro-encapsulated islets can be retrieved when necessary. As to the transplantation site, subcutaneous tissue can be promising, if new strategy can overcome the hypoxic status due to hypovascularity. In this review article, we summarized the development of macro-encapsulated islets and approaches toward subcutaneous transplantation in our laboratory over more than two decades. Our results repeatedly show that islets and encapsulated islets can be transplanted in various sites including subcutaneous tissue after pretreatment of neovascular induction. As to macro-encapsulation devices, our laboratory firstly developed mesh-reinforced poly-vinyl alcohol (PVA) hydrogel tubes and bags; agarose-based encapsulation methods followed. After that, PVA macro-encapsulated islets were developed utilizing sol-gel transition of PVA solution through micro-crystallization, induced by freezing and thawing. Recently, we took advantage of the excellent histocompatibility of ethylene vinyl alcohol co-polymer (EVOH) to fabricate the highly porous EVOH bag. A unique macro-encapsulation ㄎdevice using thermosensitive chitosan-based gel in combination with the EVOH bag was developed. Most recently, we found that slow release of hepatocyte growth factor (HGF) from the chitosan gel can protect islets against initial hypoxic status and subsequently induce neovascularization in subcutaneous tissue to exert islet function, eliminating the necessity for neovascularization pretreatment.Conclusions: Our recent study showed that retrievable and replaceable macro-encapsulated islets can be transplanted subcutaneously without pretreatment. Although further improvements may be necessary, this immunosuppression-free approach may replace intraportal islet transplantation in the near future.",
author = "Shoichiro Sumi and Yang, {Sin Yu} and Priyadarshini Canning and Kai-Chiang Yang",
year = "2019",
language = "English",
journal = "OBM Transplantation",

}

TY - JOUR

T1 - Our steps toward subcutaneous transplantation of macro-encapsulated islets

AU - Sumi, Shoichiro

AU - Yang, Sin Yu

AU - Canning, Priyadarshini

AU - Yang, Kai-Chiang

PY - 2019

Y1 - 2019

N2 - Background: Diabetes mellitus (DM) can be cured or greatly ameliorated by adequate insulin secretion from a relatively small volume of insulin-producing cells. Cell encapsulation enables allo- and even xeno-geneic cell therapy without immunosuppression. However, recent clinical trials show that micro-encapsulated islets are not fully retrievable after transplantation. By contrast, macro-encapsulated islets can be retrieved when necessary. As to the transplantation site, subcutaneous tissue can be promising, if new strategy can overcome the hypoxic status due to hypovascularity. In this review article, we summarized the development of macro-encapsulated islets and approaches toward subcutaneous transplantation in our laboratory over more than two decades. Our results repeatedly show that islets and encapsulated islets can be transplanted in various sites including subcutaneous tissue after pretreatment of neovascular induction. As to macro-encapsulation devices, our laboratory firstly developed mesh-reinforced poly-vinyl alcohol (PVA) hydrogel tubes and bags; agarose-based encapsulation methods followed. After that, PVA macro-encapsulated islets were developed utilizing sol-gel transition of PVA solution through micro-crystallization, induced by freezing and thawing. Recently, we took advantage of the excellent histocompatibility of ethylene vinyl alcohol co-polymer (EVOH) to fabricate the highly porous EVOH bag. A unique macro-encapsulation ㄎdevice using thermosensitive chitosan-based gel in combination with the EVOH bag was developed. Most recently, we found that slow release of hepatocyte growth factor (HGF) from the chitosan gel can protect islets against initial hypoxic status and subsequently induce neovascularization in subcutaneous tissue to exert islet function, eliminating the necessity for neovascularization pretreatment.Conclusions: Our recent study showed that retrievable and replaceable macro-encapsulated islets can be transplanted subcutaneously without pretreatment. Although further improvements may be necessary, this immunosuppression-free approach may replace intraportal islet transplantation in the near future.

AB - Background: Diabetes mellitus (DM) can be cured or greatly ameliorated by adequate insulin secretion from a relatively small volume of insulin-producing cells. Cell encapsulation enables allo- and even xeno-geneic cell therapy without immunosuppression. However, recent clinical trials show that micro-encapsulated islets are not fully retrievable after transplantation. By contrast, macro-encapsulated islets can be retrieved when necessary. As to the transplantation site, subcutaneous tissue can be promising, if new strategy can overcome the hypoxic status due to hypovascularity. In this review article, we summarized the development of macro-encapsulated islets and approaches toward subcutaneous transplantation in our laboratory over more than two decades. Our results repeatedly show that islets and encapsulated islets can be transplanted in various sites including subcutaneous tissue after pretreatment of neovascular induction. As to macro-encapsulation devices, our laboratory firstly developed mesh-reinforced poly-vinyl alcohol (PVA) hydrogel tubes and bags; agarose-based encapsulation methods followed. After that, PVA macro-encapsulated islets were developed utilizing sol-gel transition of PVA solution through micro-crystallization, induced by freezing and thawing. Recently, we took advantage of the excellent histocompatibility of ethylene vinyl alcohol co-polymer (EVOH) to fabricate the highly porous EVOH bag. A unique macro-encapsulation ㄎdevice using thermosensitive chitosan-based gel in combination with the EVOH bag was developed. Most recently, we found that slow release of hepatocyte growth factor (HGF) from the chitosan gel can protect islets against initial hypoxic status and subsequently induce neovascularization in subcutaneous tissue to exert islet function, eliminating the necessity for neovascularization pretreatment.Conclusions: Our recent study showed that retrievable and replaceable macro-encapsulated islets can be transplanted subcutaneously without pretreatment. Although further improvements may be necessary, this immunosuppression-free approach may replace intraportal islet transplantation in the near future.

M3 - Review article

JO - OBM Transplantation

JF - OBM Transplantation

ER -