Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by αvβ3 and β1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway

Ding Yu Lee, Yi Shuan J. Li, Shun Fu Chang, Jing Zhou, Hui Min Ho, Jeng Jiann Chiu, Shu Chien

Research output: Contribution to journalArticle

67 Citations (Scopus)


Interstitial flow in and around bone tissue is oscillatory in nature and affects the mechanical microenvironment for bone cell growth and formation. We investigated the role of oscillatory shear stress (OSS) in modulating the proliferation of human osteoblast-like MG63 cells and its underlying mechanisms. Application of OSS (0.5 ± 4 dynes/cm2) to MG63 cells induced sustained activation of phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR/p70S6K (p70S6 kinase) signaling cascades and hence cell proliferation, which was accompanied by increased expression of cyclins A and D1, cyclin-dependent protein kinases-2, -4, and -6, and bone formation-related genes (c-fos, Egr-1, and Cox-2) and decreased expression of p21CIP1 and p27KIP1. OSS-induced activation of PI3K/Akt/mTOR/p70S6K and cell proliferation were inhibited by specific antibodies or small interference RNAs of αvβ3 and β1 integrins and by dominant-negative mutants of Shc (Shc-SH2) and focal adhesion kinase (FAK) (FAK(F397Y)). Co-immunoprecipitation assay showed that OSS induces sustained increases in association of Shc and FAK with αvβ3 and β1 integrins and PI3K subunit p85, which were abolished by transfecting the cells with FAK(F397Y) or Shc-SH2. OSS also induced sustained activation of ERK, which was inhibited by the specific PI3K inhibitor LY294002 and was required for OSS-induced activation of mTOR/p70S6K and proliferation in MG63 cells. Our findings provide insights into the mechanisms by which OSS induces osteoblast-like cell proliferation through activation of αv β3 and β1 integrins and synergistic interactions of FAK and Shc with PI3K, leading to the modulation of downstream ERK and Akt/mTOR/p70S6K pathways.

Original languageEnglish
Pages (from-to)30-42
Number of pages13
JournalJournal of Biological Chemistry
Issue number1
Publication statusPublished - Jan 1 2010
Externally publishedYes


ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this