Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle.

I. Shiung Cheng, Shih Wei Huang, Hsang Chu Lu, Ching Lin Wu, Ying Chieh Chu, Shin Da Lee, Chih Yang Huang, Chia Hua Kuo

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Glycogen stored in skeletal muscle is the main fuel for endurance exercise. The present study examined the effects of oral hydroxycitrate (HCA) supplementation on post-meal glycogen synthesis in exercised human skeletal muscle. Eight healthy male volunteers (aged 22·0 (se 0·3) years) completed a 60-min cycling exercise at 70-75 % VO 2max and received HCA or placebo in a crossover design repeated after a 7 d washout period. They consumed 500 mg HCA or placebo with a high-carbohydrate meal (2 g carbohydrate/kg body weight, 80 % carbohydrate, 8 % fat, 12 % protein) for a 3-h post-exercise recovery. Muscle biopsy samples were obtained from vastus lateralis immediately and 3 h after the exercise. We found that HCA supplementation significantly lowered post-meal insulin response with similar glucose level compared to placebo. The rate of glycogen synthesis with the HCA meal was approximately onefold higher than that with the placebo meal. In contrast, GLUT4 protein level after HCA supplementation was significantly decreased below the placebo level, whereas expression of fatty acid translocase (FAT)/CD36 mRNA was significantly increased above the placebo level. Furthermore, HCA supplementation significantly increased energy reliance on fat oxidation, estimated by the gaseous exchange method. However, no differences were found in circulating NEFA and glycerol levels with the HCA meal compared with the placebo meal. The present study reports the first evidence that HCA supplementation enhanced glycogen synthesis rate in exercised human skeletal muscle and improved post-meal insulin sensitivity.

Original languageEnglish
Pages (from-to)1048-1055
Number of pages8
JournalBritish Journal of Nutrition
Volume107
Issue number7
DOIs
Publication statusPublished - Apr 2012
Externally publishedYes

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle.'. Together they form a unique fingerprint.

  • Cite this