Neonatal isolation accelerates the developmental switch in the signalling cascades for long-term potentiation induction

Chiung Chun Huang, Pei Hsuan Chou, Chih Hao Yang, Kuei Sen Hsu

Research output: Contribution to journalArticle

22 Citations (Scopus)


The molecular mechanisms underlying long-term potentiation (LTP) in the CA1 region of the hippocampus are known to vary with developmental age. The physiological factors regulating this developmental change, however, have not yet been elucidated. Here we show that mild neonatal isolation accelerates the developmental switch in the signalling cascades for hippocampal CA1 LTP induction from a cyclic AMP-dependent protein kinase (PKA)- to a Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent pattern via the activation of the corticotrophin-releasing factor (CRF) system. Furthermore, this action appears to be mediated through an increased transcription of the α isoform of the CaMKII (CaMKIIα) gene. We also demonstrate that application of CRF to cultured hippocampal neurones significantly increases the expression of CaMKIIα, which is blocked by the non-specific CRF receptor antagonist astressin, the specific CRF receptor 1 antagonist NBI 27911, and the PKA inhibitor KT5720, but not by the CRF receptor 2 antagonist K 41498, or the protein kinase C inhibitor, bisindolylmaleimide I. CRF signalling also mediates the normal maturation of LTP. These results suggest a novel role for CRF in regulating early developmental events in the hippocampus, and indicate that, although maternal deprivation is stressful for the neonate, appropriate neonatal isolation can serve to promote an endocrine state that fosters the rate of maturation of the signalling cascades underlying the induction of LTP in the developing hippocampus.

Original languageEnglish
Pages (from-to)789-799
Number of pages11
JournalJournal of Physiology
Issue number3
Publication statusPublished - Dec 15 2005
Externally publishedYes


ASJC Scopus subject areas

  • Physiology

Cite this