Abstract

BACKGROUND As plasma contains procoagulant microparticles (MPs), removing MPs by 75-nm nanofiltration may decrease plasma in vitro thrombogenicity while maintaining the hemostatic activity from coagulation factors. STUDY DESIGN AND METHODS We defined conditions to nanofilter leukoreduced plasma on a 75-nm hollow-fiber membrane filter. Plasma quality was assessed by coagulation, immunochemical, and electrophoretic assays. MP removal was evaluated by biophysical (flow cytometry, dynamic light scattering, nanoparticle tracking analysis, and tunable resistive pulse sensing) and functional (thrombin generation assay [TGA; Technothrombin], prothrombinase [Zymuphen MP-activity], tissue factor [Zymuphen MP-TF], and procoagulant phospholipid-dependent clotting time [STA-Procoag-PPL] assays) methods. Spiking experiments using platelet MPs were performed to determine extent of removal by nanofiltration. RESULTS Freshly collected leukoreduced, but not previously frozen, plasma could be readily nanofiltered on a 0.01-m2 75-nm nanofilter under conditions preserving protein and lipoprotein profile, coagulation factor content, and global coagulation activity (prothrombin time, activated partial thromboplastin time). Biophysical methods confirmed an extensive removal of MPs during nanofiltration. All functional assays indicated a marked reduction of plasma in vitro thrombogenicity. There was no thrombin generation in nanofiltered plasma tested by TGA assay with "RC-low phospholipid concentration" reagent, while it was similar to that of starting and leukoreduced plasma samples when using "RC-high phospholipid concentration" reagent. More than 9 log of MPs were removed by nanofiltration. CONCLUSION Nanofiltration of 75 nm efficiently removes MPs and decreases in vitro thrombogenicity of plasma without affecting the protein content or the hemostatic activity of coagulation factors. Studies are needed to evaluate the impact of MP removal on in vivo thrombogenic risks and hemostatic efficacy.

Original languageEnglish
Pages (from-to)2433-2444
Number of pages12
JournalTransfusion
Volume55
Issue number10
DOIs
Publication statusPublished - Oct 1 2015

Fingerprint

Blood Coagulation Factors
Hemostatics
Phospholipids
Thromboplastin
Thrombin
In Vitro Techniques
Partial Thromboplastin Time
Prothrombin Time
Nanoparticles
Lipoproteins
Flow Cytometry
Proteins
Blood Platelets
Membranes

ASJC Scopus subject areas

  • Hematology
  • Immunology
  • Immunology and Allergy

Cite this

Nanofiltration to remove microparticles and decrease the thrombogenicity of plasma : In vitro feasibility assessment. / Chou, Ming Li; Lin, Liang Tzung; Devos, David; Burnouf, Thierry.

In: Transfusion, Vol. 55, No. 10, 01.10.2015, p. 2433-2444.

Research output: Contribution to journalArticle

@article{6bc89e0ed16a4a548d971e867e7651a0,
title = "Nanofiltration to remove microparticles and decrease the thrombogenicity of plasma: In vitro feasibility assessment",
abstract = "BACKGROUND As plasma contains procoagulant microparticles (MPs), removing MPs by 75-nm nanofiltration may decrease plasma in vitro thrombogenicity while maintaining the hemostatic activity from coagulation factors. STUDY DESIGN AND METHODS We defined conditions to nanofilter leukoreduced plasma on a 75-nm hollow-fiber membrane filter. Plasma quality was assessed by coagulation, immunochemical, and electrophoretic assays. MP removal was evaluated by biophysical (flow cytometry, dynamic light scattering, nanoparticle tracking analysis, and tunable resistive pulse sensing) and functional (thrombin generation assay [TGA; Technothrombin], prothrombinase [Zymuphen MP-activity], tissue factor [Zymuphen MP-TF], and procoagulant phospholipid-dependent clotting time [STA-Procoag-PPL] assays) methods. Spiking experiments using platelet MPs were performed to determine extent of removal by nanofiltration. RESULTS Freshly collected leukoreduced, but not previously frozen, plasma could be readily nanofiltered on a 0.01-m2 75-nm nanofilter under conditions preserving protein and lipoprotein profile, coagulation factor content, and global coagulation activity (prothrombin time, activated partial thromboplastin time). Biophysical methods confirmed an extensive removal of MPs during nanofiltration. All functional assays indicated a marked reduction of plasma in vitro thrombogenicity. There was no thrombin generation in nanofiltered plasma tested by TGA assay with {"}RC-low phospholipid concentration{"} reagent, while it was similar to that of starting and leukoreduced plasma samples when using {"}RC-high phospholipid concentration{"} reagent. More than 9 log of MPs were removed by nanofiltration. CONCLUSION Nanofiltration of 75 nm efficiently removes MPs and decreases in vitro thrombogenicity of plasma without affecting the protein content or the hemostatic activity of coagulation factors. Studies are needed to evaluate the impact of MP removal on in vivo thrombogenic risks and hemostatic efficacy.",
author = "Chou, {Ming Li} and Lin, {Liang Tzung} and David Devos and Thierry Burnouf",
year = "2015",
month = "10",
day = "1",
doi = "10.1111/trf.13162",
language = "English",
volume = "55",
pages = "2433--2444",
journal = "Transfusion",
issn = "0041-1132",
publisher = "Wiley-Blackwell",
number = "10",

}

TY - JOUR

T1 - Nanofiltration to remove microparticles and decrease the thrombogenicity of plasma

T2 - In vitro feasibility assessment

AU - Chou, Ming Li

AU - Lin, Liang Tzung

AU - Devos, David

AU - Burnouf, Thierry

PY - 2015/10/1

Y1 - 2015/10/1

N2 - BACKGROUND As plasma contains procoagulant microparticles (MPs), removing MPs by 75-nm nanofiltration may decrease plasma in vitro thrombogenicity while maintaining the hemostatic activity from coagulation factors. STUDY DESIGN AND METHODS We defined conditions to nanofilter leukoreduced plasma on a 75-nm hollow-fiber membrane filter. Plasma quality was assessed by coagulation, immunochemical, and electrophoretic assays. MP removal was evaluated by biophysical (flow cytometry, dynamic light scattering, nanoparticle tracking analysis, and tunable resistive pulse sensing) and functional (thrombin generation assay [TGA; Technothrombin], prothrombinase [Zymuphen MP-activity], tissue factor [Zymuphen MP-TF], and procoagulant phospholipid-dependent clotting time [STA-Procoag-PPL] assays) methods. Spiking experiments using platelet MPs were performed to determine extent of removal by nanofiltration. RESULTS Freshly collected leukoreduced, but not previously frozen, plasma could be readily nanofiltered on a 0.01-m2 75-nm nanofilter under conditions preserving protein and lipoprotein profile, coagulation factor content, and global coagulation activity (prothrombin time, activated partial thromboplastin time). Biophysical methods confirmed an extensive removal of MPs during nanofiltration. All functional assays indicated a marked reduction of plasma in vitro thrombogenicity. There was no thrombin generation in nanofiltered plasma tested by TGA assay with "RC-low phospholipid concentration" reagent, while it was similar to that of starting and leukoreduced plasma samples when using "RC-high phospholipid concentration" reagent. More than 9 log of MPs were removed by nanofiltration. CONCLUSION Nanofiltration of 75 nm efficiently removes MPs and decreases in vitro thrombogenicity of plasma without affecting the protein content or the hemostatic activity of coagulation factors. Studies are needed to evaluate the impact of MP removal on in vivo thrombogenic risks and hemostatic efficacy.

AB - BACKGROUND As plasma contains procoagulant microparticles (MPs), removing MPs by 75-nm nanofiltration may decrease plasma in vitro thrombogenicity while maintaining the hemostatic activity from coagulation factors. STUDY DESIGN AND METHODS We defined conditions to nanofilter leukoreduced plasma on a 75-nm hollow-fiber membrane filter. Plasma quality was assessed by coagulation, immunochemical, and electrophoretic assays. MP removal was evaluated by biophysical (flow cytometry, dynamic light scattering, nanoparticle tracking analysis, and tunable resistive pulse sensing) and functional (thrombin generation assay [TGA; Technothrombin], prothrombinase [Zymuphen MP-activity], tissue factor [Zymuphen MP-TF], and procoagulant phospholipid-dependent clotting time [STA-Procoag-PPL] assays) methods. Spiking experiments using platelet MPs were performed to determine extent of removal by nanofiltration. RESULTS Freshly collected leukoreduced, but not previously frozen, plasma could be readily nanofiltered on a 0.01-m2 75-nm nanofilter under conditions preserving protein and lipoprotein profile, coagulation factor content, and global coagulation activity (prothrombin time, activated partial thromboplastin time). Biophysical methods confirmed an extensive removal of MPs during nanofiltration. All functional assays indicated a marked reduction of plasma in vitro thrombogenicity. There was no thrombin generation in nanofiltered plasma tested by TGA assay with "RC-low phospholipid concentration" reagent, while it was similar to that of starting and leukoreduced plasma samples when using "RC-high phospholipid concentration" reagent. More than 9 log of MPs were removed by nanofiltration. CONCLUSION Nanofiltration of 75 nm efficiently removes MPs and decreases in vitro thrombogenicity of plasma without affecting the protein content or the hemostatic activity of coagulation factors. Studies are needed to evaluate the impact of MP removal on in vivo thrombogenic risks and hemostatic efficacy.

UR - http://www.scopus.com/inward/record.url?scp=84943815250&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84943815250&partnerID=8YFLogxK

U2 - 10.1111/trf.13162

DO - 10.1111/trf.13162

M3 - Article

C2 - 25988671

AN - SCOPUS:84943815250

VL - 55

SP - 2433

EP - 2444

JO - Transfusion

JF - Transfusion

SN - 0041-1132

IS - 10

ER -