Multifunctional nanoparticles for oral protein drug delivery

Er-Yuan Chuang, Kun Ju Lin, Fang Yi Su, Fwu-Long Mi, Chiung Tong Chen, Jyuhn Huarng Juang, Hsing Wen Sung

Research output: Contribution to journalArticle

Abstract

Calcium (Ca2+) has a crucial role in maintaining the intestinal protease activity and in forming the apical junction complex (AJC) that preserves epithelial barrier function. Ethylene glycol tetraacetic acid (EGTA) is a Ca2+-specific chelating agent. To maintain the concentration of this chelator in areas where enzyme inhibition and paracellular permeation enhancement are needed, this study synthesized a poly(γ-glutamic acid)-EGTA conjugate (γPGA-EGTA) to form nanoparticles (NPs) with chitosan (CS) for oral insulin delivery. Results of our molecular dynamic (MD) simulations indicate that Ca2+ ions could be specifically chelated to the nitrogen atoms, ether oxygen atoms, and carboxylate oxygen atoms in [Ca(EGTA)]2− anions. By chelating Ca2+, γPGA-EGTA conferred a significant insulin protection effect against proteases in intestinal tracts isolated from rats. Additionally, calcium depletion by γPGA-EGTA could stimulate the endocytosis of AJC components in Caco-2 cell monolayers, which led to a reversible opening of AJCs and thus increased their paracellular permeability. Single-photon emission computed tomography images performed in the biodistribution study clearly show the 123I-insulin orally delivered by CS/γPGA-EGTA NPs in the heart, aorta, renal cortex, renal pelvis and liver, which ultimately produced a significant and prolonged hypoglycemic effect in diabetic rats. The above results confirm that this γPGA-EGTA conjugate is a promising candidate for oral insulin delivery.
Original languageEnglish
JournalNanomedicine: Nanotechnology, Biology, and Medicine
Publication statusPublished - 2016

    Fingerprint

Cite this