TY - JOUR
T1 - Mouse mammary tumor virus gene expression is suppressed by oligomeric ellagitannins, novel inhibitors of poly(ADP-ribose) glycohydrolase
AU - Tsai, Y. J.
AU - Aoki, T.
AU - Maruta, H.
AU - Abe, H.
AU - Sakagami, H.
AU - Hatano, T.
AU - Okuda, T.
AU - Tanuma, S. I.
N1 - Copyright:
Copyright 2004 Elsevier B.V., All rights reserved.
PY - 1992
Y1 - 1992
N2 - Oligomeric ellagitannins (nobotanins B, E, and K) were found to be potent inhibitors of poly(ADP-ribose) glycohydrolase purified from mouse mammary tumor 34I cells. Kinetic analysis revealed that the inhibition of nobotanin B (dimer) was competitive with respect to the substrate poly(ADP-ribose), whereas nobotanin E (trimer) and nobotanin K (tetramer) exhibited mixed-type inhibition. These results suggest that the dimeric structure of ellagitannin may have a functional domain that competes with poly(ADP-ribose) on the poly(ADP-ribose) glycohydrolase molecule. To determine the inhibitory effects of oligomeric ellagitannins on poly(ADP-ribose) glycohydrolase in vivo, we examined their effects on de-poly(ADP-ribosyl)ation of some chromosomal proteins in intact 341 cells that was induced by glucocorticoid treatment. Nobotanin B caused concentration-dependent inhibition of glucocorticoid-induced de-poly(ADP-ribosyl)ation of HMG 14 and 17 and histone H1 in intact 341 cells. Interestingly, this inhibition was associated with suppression of the glucocorticoid-sensitive mouse mammary tumor virus (MMTV) mRNA synthesis. In contrast, nobotanin E and K had little inhibitory effect on either depoly(ADP-ribosyl)ation of these proteins or induction of MMTV transcription after glucocorticoid treatment. Nobotanin B but not E and K was taken into 34I cells. These results may suggest that the suppression of glucocorticoid-sensitive MMTV transcription results from in vivo inhibition of poly(ADP-ribose) glycohydrolase by nobotanin B. These results also indicate the importance of de-poly(ADP-ribosyl)ation of HMG 14 and 17 and histone H1 in regulation of transcription of the glucocorticoid-sensitive MMTV gene.
AB - Oligomeric ellagitannins (nobotanins B, E, and K) were found to be potent inhibitors of poly(ADP-ribose) glycohydrolase purified from mouse mammary tumor 34I cells. Kinetic analysis revealed that the inhibition of nobotanin B (dimer) was competitive with respect to the substrate poly(ADP-ribose), whereas nobotanin E (trimer) and nobotanin K (tetramer) exhibited mixed-type inhibition. These results suggest that the dimeric structure of ellagitannin may have a functional domain that competes with poly(ADP-ribose) on the poly(ADP-ribose) glycohydrolase molecule. To determine the inhibitory effects of oligomeric ellagitannins on poly(ADP-ribose) glycohydrolase in vivo, we examined their effects on de-poly(ADP-ribosyl)ation of some chromosomal proteins in intact 341 cells that was induced by glucocorticoid treatment. Nobotanin B caused concentration-dependent inhibition of glucocorticoid-induced de-poly(ADP-ribosyl)ation of HMG 14 and 17 and histone H1 in intact 341 cells. Interestingly, this inhibition was associated with suppression of the glucocorticoid-sensitive mouse mammary tumor virus (MMTV) mRNA synthesis. In contrast, nobotanin E and K had little inhibitory effect on either depoly(ADP-ribosyl)ation of these proteins or induction of MMTV transcription after glucocorticoid treatment. Nobotanin B but not E and K was taken into 34I cells. These results may suggest that the suppression of glucocorticoid-sensitive MMTV transcription results from in vivo inhibition of poly(ADP-ribose) glycohydrolase by nobotanin B. These results also indicate the importance of de-poly(ADP-ribosyl)ation of HMG 14 and 17 and histone H1 in regulation of transcription of the glucocorticoid-sensitive MMTV gene.
UR - http://www.scopus.com/inward/record.url?scp=0026681651&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026681651&partnerID=8YFLogxK
M3 - Article
C2 - 1321148
AN - SCOPUS:0026681651
VL - 267
SP - 14436
EP - 14442
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 20
ER -