Molybdenum doping effects for bismuth vanadate photocatalysts on electrochemical performances using the solution process

Yu Shiang Chen, Lu Yin Lin, Hung Yun Lin

Research output: Contribution to journalArticle

Abstract

Metal-doping is widely used to enhance charge generation and reduce carrier recombination of BiVO4 for catalyzing water oxidation. In this work, different Mo-doping levels are applied to synthesize Mo-doped BiVO4 (MBVO) on conductive glasses. Molybdenum plays multiple roles of dopant, structure-confined mediator, and sources for forming additional semiconductor. The MBVO with lower Mo-doping levels presents bi-layered structure with nanowire overlayer and nanorod underlayer, which can develop facile one-dimensional charge-transfer paths and efficient heterojunction. With preferable design of nanowire and nanorod layers, the high light absorption, small charge-transfer resistance and high carrier density are attained for MBVO with 1% Mo-doping, which shows the highest photocurrent density of 2.5 mA/cm2 at 1.23 VRHE, smallest onset potential of 0.22 VRHE and highest maximum photoconversion efficiency of 2.20%. This work carefully illustrates the function of molybdenum and firstly constructs the unique bi-layered structure for MBVO to display outstanding photoelectrochemical performance for catalyzing water oxidation.

Original languageEnglish
Pages (from-to)667-674
Number of pages8
JournalInternational Journal of Hydrogen Energy
Volume45
Issue number1
DOIs
Publication statusPublished - Jan 1 2020

Keywords

  • BiVO
  • Doping
  • Heterojunction
  • Molybdenum
  • Photoconversion
  • Water oxidation

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

Fingerprint Dive into the research topics of 'Molybdenum doping effects for bismuth vanadate photocatalysts on electrochemical performances using the solution process'. Together they form a unique fingerprint.

  • Cite this