Molecular‐mechanical studies of Z‐DNA: A comparison of the structural and energetic properties of Z‐ and B‐DNA

Peter Kollman, Paul Weiner, Gary Quigley, Andrew Wang

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

Molecular‐mechanical studies of the left‐handed Z‐DNA polymers have been carried out and the results compared with similar calculations on B‐DNA polymers. We have studied d(CGCGCG)2, d(GCGCGC)2 (and their 5‐methyl cytosine analogs), dG6·dC6, d(ATATAT)2, and d(TATATA)2 in both B‐ and Z‐forms. For the left‐handed Z helices, we considered the ZI and ZII model of Quigley and co‐workers [Wang, A. H., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. & Rich, A. (1979) Nature (London) 282, 680–686], the actual “Z spermidine” and “Z spermine” structures of Quigley and the model‐built structure of Chandresekharan et al. [Arnott, S., Chandresekharan, R., Bindsall, D. L., Leslie, A. G. W. & Ratliff, R. L. (1980) Nature 283, 743–745]. The major conclusions of this study are as follows. (1) The stabilization of Z‐DNA relative to B‐DNA occurs as one increases the “effective” dielectric constant or adds counterions, consistent with observations of Z‐DNA only under high salt conditions. (2) The ZII polymer is calculated to be more stable than the ZI polymer. It is not yet clear whether the greater stability of ZII than ZI is a real effect or an artifact caused by the lack of inclusion of specific solvation effects in these calculations. (3) The greater tendency of the 5‐methyl cytosine analog of poly(dG‐dC)·poly(dG‐dC) to undergo the B → Z transition is found in our calculations and is due to destabilizing base–base and base–phosphate interactions, which are greater in the B‐ than in the Z‐form of the 5‐methyl cytosine polymer. (4) There are no large sequence‐dependent effects on the relative stabilities, and the AT polymers are calculated to be as likely to form Z‐helices as the GC polymers. In addition, the relative stability of a nonalternating sequence in the conformation is only slightly less than that found for alternating sequences.

Original languageEnglish
Pages (from-to)1945-1969
Number of pages25
JournalBiopolymers
Volume21
Issue number10
DOIs
Publication statusPublished - Oct 1982
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry
  • Biomaterials
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Molecular‐mechanical studies of Z‐DNA: A comparison of the structural and energetic properties of Z‐ and B‐DNA'. Together they form a unique fingerprint.

Cite this