Molecular characterization of Marek's disease herpesvirus B antigen

R. J. Isfort, I. Sithole, H. J. Kung, L. F. Velicer

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [35S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [35S]methionine- and 14C-labeled infected cells with two other sera shown to have anti-B activity, i.e., rabbit anti-MDHV-infected-cell plasma membrane (RαPM) and immune chicken serum from birds naturally infected with MDHV. The three herpesvirus of turkeys (HVT) B-antigen (HVT-B) glycoproteins immunoprecipitated with all three sera containing anti-B activity were also shown to be identical in size to those of MDHV-B by immunoprecipitation and SDS-PAGE. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B, previously identified only by immunodiffusion, and to a similarly sized set of immunologically related common glycoproteins called gp100, gp60, and gp49, detected with monoclonal antibody by other workers. Tunicamycin inhibition of N-linked glycosylation resulted in either nonglycosylated or O-linked glycosylated putative precursors of MDHV-B and HVT-B with apparent molecular weights of 88,000, called pr88, and 44,000, tentatively called pr44, both immunoprecipitable with all three sera. However, the relationships of these two polypeptides to each other and to the overall precursor-processing relationship of the MDHV-B complex remains to be elucidated. The three fully glycosylated B-antigen polypeptides were not connected by disulfide linkage. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, and gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum.

Original languageEnglish
Pages (from-to)411-419
Number of pages9
JournalJournal of Virology
Volume59
Issue number2
Publication statusPublished - Jan 1 1986
Externally publishedYes

Fingerprint

Macacine herpesvirus 1
Marek Disease
Marek disease
Cercopithecine Herpesvirus 1
antigens
Herpesviridae
Immunoprecipitation
polypeptides
Meleagrid herpesvirus 1
blood serum
Cell Membrane
Glycoproteins
glycoproteins
Peptides
Immune Sera
Chickens
Immunodiffusion
plasma membrane
Antigens
Sodium Dodecyl Sulfate

ASJC Scopus subject areas

  • Immunology

Cite this

Isfort, R. J., Sithole, I., Kung, H. J., & Velicer, L. F. (1986). Molecular characterization of Marek's disease herpesvirus B antigen. Journal of Virology, 59(2), 411-419.

Molecular characterization of Marek's disease herpesvirus B antigen. / Isfort, R. J.; Sithole, I.; Kung, H. J.; Velicer, L. F.

In: Journal of Virology, Vol. 59, No. 2, 01.01.1986, p. 411-419.

Research output: Contribution to journalArticle

Isfort, RJ, Sithole, I, Kung, HJ & Velicer, LF 1986, 'Molecular characterization of Marek's disease herpesvirus B antigen', Journal of Virology, vol. 59, no. 2, pp. 411-419.
Isfort, R. J. ; Sithole, I. ; Kung, H. J. ; Velicer, L. F. / Molecular characterization of Marek's disease herpesvirus B antigen. In: Journal of Virology. 1986 ; Vol. 59, No. 2. pp. 411-419.
@article{01aa471abee840efa0dad6a7b6f1afc5,
title = "Molecular characterization of Marek's disease herpesvirus B antigen",
abstract = "The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [35S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [35S]methionine- and 14C-labeled infected cells with two other sera shown to have anti-B activity, i.e., rabbit anti-MDHV-infected-cell plasma membrane (RαPM) and immune chicken serum from birds naturally infected with MDHV. The three herpesvirus of turkeys (HVT) B-antigen (HVT-B) glycoproteins immunoprecipitated with all three sera containing anti-B activity were also shown to be identical in size to those of MDHV-B by immunoprecipitation and SDS-PAGE. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B, previously identified only by immunodiffusion, and to a similarly sized set of immunologically related common glycoproteins called gp100, gp60, and gp49, detected with monoclonal antibody by other workers. Tunicamycin inhibition of N-linked glycosylation resulted in either nonglycosylated or O-linked glycosylated putative precursors of MDHV-B and HVT-B with apparent molecular weights of 88,000, called pr88, and 44,000, tentatively called pr44, both immunoprecipitable with all three sera. However, the relationships of these two polypeptides to each other and to the overall precursor-processing relationship of the MDHV-B complex remains to be elucidated. The three fully glycosylated B-antigen polypeptides were not connected by disulfide linkage. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, and gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum.",
author = "Isfort, {R. J.} and I. Sithole and Kung, {H. J.} and Velicer, {L. F.}",
year = "1986",
month = "1",
day = "1",
language = "English",
volume = "59",
pages = "411--419",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "2",

}

TY - JOUR

T1 - Molecular characterization of Marek's disease herpesvirus B antigen

AU - Isfort, R. J.

AU - Sithole, I.

AU - Kung, H. J.

AU - Velicer, L. F.

PY - 1986/1/1

Y1 - 1986/1/1

N2 - The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [35S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [35S]methionine- and 14C-labeled infected cells with two other sera shown to have anti-B activity, i.e., rabbit anti-MDHV-infected-cell plasma membrane (RαPM) and immune chicken serum from birds naturally infected with MDHV. The three herpesvirus of turkeys (HVT) B-antigen (HVT-B) glycoproteins immunoprecipitated with all three sera containing anti-B activity were also shown to be identical in size to those of MDHV-B by immunoprecipitation and SDS-PAGE. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B, previously identified only by immunodiffusion, and to a similarly sized set of immunologically related common glycoproteins called gp100, gp60, and gp49, detected with monoclonal antibody by other workers. Tunicamycin inhibition of N-linked glycosylation resulted in either nonglycosylated or O-linked glycosylated putative precursors of MDHV-B and HVT-B with apparent molecular weights of 88,000, called pr88, and 44,000, tentatively called pr44, both immunoprecipitable with all three sera. However, the relationships of these two polypeptides to each other and to the overall precursor-processing relationship of the MDHV-B complex remains to be elucidated. The three fully glycosylated B-antigen polypeptides were not connected by disulfide linkage. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, and gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum.

AB - The Marek's disease herpesvirus (MDHV) B antigen (MDHV-B) was identified and molecularly characterized as a set of three glycoproteins of 100,000, 60,000, and 49,000 apparent molecular weight (gp100, gp60, and gp49, respectively) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) after immunoprecipitation from [35S]methionine-labeled infected cells by specific rabbit antiserum directed against MDHV-B (RαB), as previously determined by immunodiffusion. Further identification was accomplished by blocking this immunoprecipitation with highly purified MDHV-B. The same set of three polypeptides was also immunoprecipitated from [35S]methionine- and 14C-labeled infected cells with two other sera shown to have anti-B activity, i.e., rabbit anti-MDHV-infected-cell plasma membrane (RαPM) and immune chicken serum from birds naturally infected with MDHV. The three herpesvirus of turkeys (HVT) B-antigen (HVT-B) glycoproteins immunoprecipitated with all three sera containing anti-B activity were also shown to be identical in size to those of MDHV-B by immunoprecipitation and SDS-PAGE. These data serve to clarify the molecular identification of the polypeptides found in common between MDHV and HVT by linking them to MDHV-B, previously identified only by immunodiffusion, and to a similarly sized set of immunologically related common glycoproteins called gp100, gp60, and gp49, detected with monoclonal antibody by other workers. Tunicamycin inhibition of N-linked glycosylation resulted in either nonglycosylated or O-linked glycosylated putative precursors of MDHV-B and HVT-B with apparent molecular weights of 88,000, called pr88, and 44,000, tentatively called pr44, both immunoprecipitable with all three sera. However, the relationships of these two polypeptides to each other and to the overall precursor-processing relationship of the MDHV-B complex remains to be elucidated. The three fully glycosylated B-antigen polypeptides were not connected by disulfide linkage. Collectively, the data presented here and by others support the conclusion that all three glycoproteins now identified as gp100, and gp60, and gp49 have MDHV-B determinants. Finally, detection of the same three polypeptides with well-absorbed RαPM, which was directed against purified infected-cell plasma membranes, suggests that at least one component of the B-antigen complex has a plasma membrane location in the infected cell. These preliminary data point to the future membrane biochemistry and membrane immunology experiments needed to understand the MDHV system, and they may explain the high level of immunogenicity of MDHV-B in the infected chicken, as shown by its immunoprecipitation with immune chicken serum.

UR - http://www.scopus.com/inward/record.url?scp=0022531448&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022531448&partnerID=8YFLogxK

M3 - Article

C2 - 3016305

AN - SCOPUS:0022531448

VL - 59

SP - 411

EP - 419

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 2

ER -