Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene

A structure-activity relationship study

Shur Hueih Cherng, Shaw Tao Lin, Huei Lee

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Benzo[a]pyrene (B[a]P) is able to inhibit the mutagenicity of 1-nitropyrene (1-NP) through the reduction of nitroreductase activity and formation of adducts with DNA. The relationship between the chemical structure of 9 polycyclic aromatic hydrocarbons (PAHs) and antagonistic effects on the 1-NP-induced mutation were evaluated by the binary mixtures of 1-NP and PAHs with Salmonella typhimurium TA98 in the absence of S9 mix. Remarkably different antagonistic effects of 9 PAHs on the mutagenicity of 1-NP were observed. Among the tested PAHs, coronene demonstrates the most antagonistic potential followed by benzo[g,h,i]perylene (B[g,h,i]P), benzo[e]pyrene (B[e]P), dibenzo[a,h]pyrene (DB[a,h]P), benzo[a]pyrene (B[a]P) and pyrene. Naphthalene, anthracene, and chrysene had only minor inhibitory activity on the 1-NP mutagenicity. The modifying effects of PAHs on the nitroreductase activity of TA98 strains in the presence of 1-NP were further examined from the production of 1-AP. The statistical analytical data showed that the inhibitory effect of PAHs on the mutagenicity of 1-NP significantly correlated with their effects on the nitroreductase activity (r = -0.69, p <0.05). In addition, the formation of 1-NP-DNA adducts of the binary mixtures of 1-NP and PAH was determined by the 32P-postlabeled method. The results indicated that the modulatory effects of PAHs on the formation of 1-NP-DNA adducts were correlated well with their antagonistic activity (r = -0.91, P <0.01). From the above results, the relationships between the chemical structure of PAHs and the antagonistic effects of the 1-NP mutagenicity were revealed by the surface area and electronic parameters of PAHs. The planar molecular area of PAHs was more convincingly correlated with the antagonistic effect on the mutagenicity of 1-NP (r = 0.81, p <0.01) than that with the difference in energy, ΔE, between E(HOMO) and E(LUMO) (r = 0.69, p <0.05). According to the above, two possible mechanisms are involved in the interactive effect of the binary mixtures: (1) a higher binding affinity with nitroreductase for PAHs having a large planar surface area; and (2) a high energy of interaction between 1-NP and PAHs with a low ΔE might decrease the nitroreductive capability.

Original languageEnglish
Pages (from-to)177-185
Number of pages9
JournalMutation Research - Genetic Toxicology
Volume367
Issue number4
DOIs
Publication statusPublished - 1996
Externally publishedYes

Fingerprint

1-nitropyrene
Polycyclic Aromatic Hydrocarbons
Structure-Activity Relationship
Nitroreductases
DNA Adducts
Binary mixtures
Benzo(a)pyrene

Keywords

  • 1-Nitropyrene
  • DNA adduct
  • Nitroreductase
  • Polycyclic aromatic hydrocarbon

ASJC Scopus subject areas

  • Toxicology
  • Genetics

Cite this

Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene : A structure-activity relationship study. / Cherng, Shur Hueih; Lin, Shaw Tao; Lee, Huei.

In: Mutation Research - Genetic Toxicology, Vol. 367, No. 4, 1996, p. 177-185.

Research output: Contribution to journalArticle

@article{b79c0762fb0745dcbdc775a79ab5238a,
title = "Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene: A structure-activity relationship study",
abstract = "Benzo[a]pyrene (B[a]P) is able to inhibit the mutagenicity of 1-nitropyrene (1-NP) through the reduction of nitroreductase activity and formation of adducts with DNA. The relationship between the chemical structure of 9 polycyclic aromatic hydrocarbons (PAHs) and antagonistic effects on the 1-NP-induced mutation were evaluated by the binary mixtures of 1-NP and PAHs with Salmonella typhimurium TA98 in the absence of S9 mix. Remarkably different antagonistic effects of 9 PAHs on the mutagenicity of 1-NP were observed. Among the tested PAHs, coronene demonstrates the most antagonistic potential followed by benzo[g,h,i]perylene (B[g,h,i]P), benzo[e]pyrene (B[e]P), dibenzo[a,h]pyrene (DB[a,h]P), benzo[a]pyrene (B[a]P) and pyrene. Naphthalene, anthracene, and chrysene had only minor inhibitory activity on the 1-NP mutagenicity. The modifying effects of PAHs on the nitroreductase activity of TA98 strains in the presence of 1-NP were further examined from the production of 1-AP. The statistical analytical data showed that the inhibitory effect of PAHs on the mutagenicity of 1-NP significantly correlated with their effects on the nitroreductase activity (r = -0.69, p <0.05). In addition, the formation of 1-NP-DNA adducts of the binary mixtures of 1-NP and PAH was determined by the 32P-postlabeled method. The results indicated that the modulatory effects of PAHs on the formation of 1-NP-DNA adducts were correlated well with their antagonistic activity (r = -0.91, P <0.01). From the above results, the relationships between the chemical structure of PAHs and the antagonistic effects of the 1-NP mutagenicity were revealed by the surface area and electronic parameters of PAHs. The planar molecular area of PAHs was more convincingly correlated with the antagonistic effect on the mutagenicity of 1-NP (r = 0.81, p <0.01) than that with the difference in energy, ΔE, between E(HOMO) and E(LUMO) (r = 0.69, p <0.05). According to the above, two possible mechanisms are involved in the interactive effect of the binary mixtures: (1) a higher binding affinity with nitroreductase for PAHs having a large planar surface area; and (2) a high energy of interaction between 1-NP and PAHs with a low ΔE might decrease the nitroreductive capability.",
keywords = "1-Nitropyrene, DNA adduct, Nitroreductase, Polycyclic aromatic hydrocarbon",
author = "Cherng, {Shur Hueih} and Lin, {Shaw Tao} and Huei Lee",
year = "1996",
doi = "10.1016/S0165-1218(96)90075-0",
language = "English",
volume = "367",
pages = "177--185",
journal = "Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental or Occupational Exposure",
issn = "0165-1218",
publisher = "Elsevier BV",
number = "4",

}

TY - JOUR

T1 - Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene

T2 - A structure-activity relationship study

AU - Cherng, Shur Hueih

AU - Lin, Shaw Tao

AU - Lee, Huei

PY - 1996

Y1 - 1996

N2 - Benzo[a]pyrene (B[a]P) is able to inhibit the mutagenicity of 1-nitropyrene (1-NP) through the reduction of nitroreductase activity and formation of adducts with DNA. The relationship between the chemical structure of 9 polycyclic aromatic hydrocarbons (PAHs) and antagonistic effects on the 1-NP-induced mutation were evaluated by the binary mixtures of 1-NP and PAHs with Salmonella typhimurium TA98 in the absence of S9 mix. Remarkably different antagonistic effects of 9 PAHs on the mutagenicity of 1-NP were observed. Among the tested PAHs, coronene demonstrates the most antagonistic potential followed by benzo[g,h,i]perylene (B[g,h,i]P), benzo[e]pyrene (B[e]P), dibenzo[a,h]pyrene (DB[a,h]P), benzo[a]pyrene (B[a]P) and pyrene. Naphthalene, anthracene, and chrysene had only minor inhibitory activity on the 1-NP mutagenicity. The modifying effects of PAHs on the nitroreductase activity of TA98 strains in the presence of 1-NP were further examined from the production of 1-AP. The statistical analytical data showed that the inhibitory effect of PAHs on the mutagenicity of 1-NP significantly correlated with their effects on the nitroreductase activity (r = -0.69, p <0.05). In addition, the formation of 1-NP-DNA adducts of the binary mixtures of 1-NP and PAH was determined by the 32P-postlabeled method. The results indicated that the modulatory effects of PAHs on the formation of 1-NP-DNA adducts were correlated well with their antagonistic activity (r = -0.91, P <0.01). From the above results, the relationships between the chemical structure of PAHs and the antagonistic effects of the 1-NP mutagenicity were revealed by the surface area and electronic parameters of PAHs. The planar molecular area of PAHs was more convincingly correlated with the antagonistic effect on the mutagenicity of 1-NP (r = 0.81, p <0.01) than that with the difference in energy, ΔE, between E(HOMO) and E(LUMO) (r = 0.69, p <0.05). According to the above, two possible mechanisms are involved in the interactive effect of the binary mixtures: (1) a higher binding affinity with nitroreductase for PAHs having a large planar surface area; and (2) a high energy of interaction between 1-NP and PAHs with a low ΔE might decrease the nitroreductive capability.

AB - Benzo[a]pyrene (B[a]P) is able to inhibit the mutagenicity of 1-nitropyrene (1-NP) through the reduction of nitroreductase activity and formation of adducts with DNA. The relationship between the chemical structure of 9 polycyclic aromatic hydrocarbons (PAHs) and antagonistic effects on the 1-NP-induced mutation were evaluated by the binary mixtures of 1-NP and PAHs with Salmonella typhimurium TA98 in the absence of S9 mix. Remarkably different antagonistic effects of 9 PAHs on the mutagenicity of 1-NP were observed. Among the tested PAHs, coronene demonstrates the most antagonistic potential followed by benzo[g,h,i]perylene (B[g,h,i]P), benzo[e]pyrene (B[e]P), dibenzo[a,h]pyrene (DB[a,h]P), benzo[a]pyrene (B[a]P) and pyrene. Naphthalene, anthracene, and chrysene had only minor inhibitory activity on the 1-NP mutagenicity. The modifying effects of PAHs on the nitroreductase activity of TA98 strains in the presence of 1-NP were further examined from the production of 1-AP. The statistical analytical data showed that the inhibitory effect of PAHs on the mutagenicity of 1-NP significantly correlated with their effects on the nitroreductase activity (r = -0.69, p <0.05). In addition, the formation of 1-NP-DNA adducts of the binary mixtures of 1-NP and PAH was determined by the 32P-postlabeled method. The results indicated that the modulatory effects of PAHs on the formation of 1-NP-DNA adducts were correlated well with their antagonistic activity (r = -0.91, P <0.01). From the above results, the relationships between the chemical structure of PAHs and the antagonistic effects of the 1-NP mutagenicity were revealed by the surface area and electronic parameters of PAHs. The planar molecular area of PAHs was more convincingly correlated with the antagonistic effect on the mutagenicity of 1-NP (r = 0.81, p <0.01) than that with the difference in energy, ΔE, between E(HOMO) and E(LUMO) (r = 0.69, p <0.05). According to the above, two possible mechanisms are involved in the interactive effect of the binary mixtures: (1) a higher binding affinity with nitroreductase for PAHs having a large planar surface area; and (2) a high energy of interaction between 1-NP and PAHs with a low ΔE might decrease the nitroreductive capability.

KW - 1-Nitropyrene

KW - DNA adduct

KW - Nitroreductase

KW - Polycyclic aromatic hydrocarbon

UR - http://www.scopus.com/inward/record.url?scp=0029865213&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029865213&partnerID=8YFLogxK

U2 - 10.1016/S0165-1218(96)90075-0

DO - 10.1016/S0165-1218(96)90075-0

M3 - Article

VL - 367

SP - 177

EP - 185

JO - Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental or Occupational Exposure

JF - Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental or Occupational Exposure

SN - 0165-1218

IS - 4

ER -