經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質

Translated title of the contribution: Microstructure and Properties of a Nanostructural TiO2 Layer on the plasma-treated Titanium Implant

黃 瓊芳(Chiung-Fang Huang), 蔡 政宏(Cheng-Hong Tsai), 歐 耿良(Keng-Liang Ou), 詹 宗瑾(Chung-Chin Chan), 李 勝揚(Sheng-Yang Lee)

Research output: Contribution to journalArticle

Abstract

The excellent biocompatibility of titanium is achieved by a stable and corrosion-resistant oxide layer. The crystal structure and thickness of the oxide layer have different influences on cell behavior, especially protein adsorption and blood compatibility. In order to improve the integration of implants, the interfacial reaction must be controlled to minimize the nonspecific adsorption of proteins and promote tissue healing phenomena. Thus, our goal was to develop a new method to functionalize the implant surface by glow discharge. First, argon plasma was used to remove all chemical traces such as adsorbed contaminants and impurities on the titanium surfaces, and subsequently oxidation by oxygen plasmas with ion bombardment resulted in a dense oxide layer. According to the physical and chemical properties detected and analyzed, results revealed that the plasma-treatment power was proportionally related to the oxide layer thickness at specific working times. The ability to resist corrosion was dependent on the oxide thickness. Surface wettability was measured by the contact angle analysis. It revealed that the longer time the titanium was treated, the better hydrophilic properties that resulted. Analyses by grazing incidence x-ray diffractometry (GIXRD) and transmission electron microscopy (TEM) showed that an amorphous-like titanium surface with a rutile-phase nano-TiO2 structure existed. Based on these results, the oxide layer thickness increased after plasma treatment, and the crystal structure is a nanostructural rutile TiO2 phase that can increase specific protein adsorption and enhance hemocompatibility. It is believed that nanostructural titanium oxide films can improve tissue healing and promote subsequent osseointegration.
Original languageTraditional Chinese
Pages (from-to)185-192
Number of pages8
Journal中華牙醫學雜誌(中文版)
Volume1
Issue number3
Publication statusPublished - 2005

Fingerprint

Titanium
Oxides
Plasmas
Microstructure
Adsorption
Crystal structure
Impurities
Tissue
Corrosion
Proteins
Argon
Glow discharges
Ion bombardment
Surface chemistry
Biocompatibility
Chemical properties
Oxide films
Contact angle
Wetting
Blood

Keywords

  • blood compatibility
  • TiO2
  • corrosion resistance
  • osseointegration

Cite this

經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質. / 黃瓊芳(Chiung-Fang Huang); 蔡政宏(Cheng-Hong Tsai); 歐耿良(Keng-Liang Ou); 詹宗瑾(Chung-Chin Chan); 李勝揚(Sheng-Yang Lee).

In: 中華牙醫學雜誌(中文版), Vol. 1, No. 3, 2005, p. 185-192.

Research output: Contribution to journalArticle

黃瓊芳(Chiung-Fang Huang) ; 蔡政宏(Cheng-Hong Tsai) ; 歐耿良(Keng-Liang Ou) ; 詹宗瑾(Chung-Chin Chan) ; 李勝揚(Sheng-Yang Lee). / 經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質. In: 中華牙醫學雜誌(中文版). 2005 ; Vol. 1, No. 3. pp. 185-192.
@article{0c7637099abf4e2486bd7b3998e0df92,
title = "經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質",
abstract = "鈦金屬的良好生物相容性來自於它表面上那一層穩定且能抗腐蝕的氣化層,而且這一層氣化層的晶格結構和厚度多寡,對於細胞的行為有不同的影響,尤其是在蛋白質吸收和血液相容性方面。為了改善鈦植體與骨之間的骨整合作用,界面的反應攤須要能控制組織癒合的效果,且將非特定蛋白質的吸收降到最低。因此,本研究利用低溫電漿(glow discharge)來發展一植體表面處理技術,先以氫氣電漿清除鈦金屬表面一些微量的化學污染物及雜質,再以氣電漿讓鈦金屬表面產生一層緻密的二氧化鈦層。此氧化層經過物理性質與化學性質之檢測與分析後,可發現經電漿處理後的鈦金屬植體表面的二氧化鈦層厚度與處理的能量之間具有一正比關係,抗腐蝕能力亦相對的增加。以接觸角量測儀來分析其表面可濕潤性之變化,顯示電漿處理功率越高或時間越久,其表面越趨向親水性。經由低掠角X光繞射儀(GIXRD)與穿透式電子顯微鏡(TEM)之觀察得知,此氧化層為一存在有金紅石(rutile Ti○2)類非結品形之奈米結構。從實驗結果可知,經電漿處理後之鈦金屬表面氣化層厚度增加,且其晶格為奈米結構之金紅石,此二氧化鈦層之性質能增加對特定蛋白質之吸收與血液相容性,促進組織癒合之能力,進而改善鈦植體與骨之間的骨整合作用。",
keywords = "血液相容性, 二氧化鈦, 抗腐蝕, 骨整合, blood compatibility, TiO2, corrosion resistance, osseointegration",
author = "黃, {瓊芳(Chiung-Fang Huang)} and 蔡, {政宏(Cheng-Hong Tsai)} and 歐, {耿良(Keng-Liang Ou)} and 詹, {宗瑾(Chung-Chin Chan)} and 李, {勝揚(Sheng-Yang Lee)}",
year = "2005",
language = "繁體中文",
volume = "1",
pages = "185--192",
journal = "中華牙醫學雜誌(中文版)",
issn = "1010-3287",
publisher = "中華牙醫學會",
number = "3",

}

TY - JOUR

T1 - 經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質

AU - 黃, 瓊芳(Chiung-Fang Huang)

AU - 蔡, 政宏(Cheng-Hong Tsai)

AU - 歐, 耿良(Keng-Liang Ou)

AU - 詹, 宗瑾(Chung-Chin Chan)

AU - 李, 勝揚(Sheng-Yang Lee)

PY - 2005

Y1 - 2005

N2 - 鈦金屬的良好生物相容性來自於它表面上那一層穩定且能抗腐蝕的氣化層,而且這一層氣化層的晶格結構和厚度多寡,對於細胞的行為有不同的影響,尤其是在蛋白質吸收和血液相容性方面。為了改善鈦植體與骨之間的骨整合作用,界面的反應攤須要能控制組織癒合的效果,且將非特定蛋白質的吸收降到最低。因此,本研究利用低溫電漿(glow discharge)來發展一植體表面處理技術,先以氫氣電漿清除鈦金屬表面一些微量的化學污染物及雜質,再以氣電漿讓鈦金屬表面產生一層緻密的二氧化鈦層。此氧化層經過物理性質與化學性質之檢測與分析後,可發現經電漿處理後的鈦金屬植體表面的二氧化鈦層厚度與處理的能量之間具有一正比關係,抗腐蝕能力亦相對的增加。以接觸角量測儀來分析其表面可濕潤性之變化,顯示電漿處理功率越高或時間越久,其表面越趨向親水性。經由低掠角X光繞射儀(GIXRD)與穿透式電子顯微鏡(TEM)之觀察得知,此氧化層為一存在有金紅石(rutile Ti○2)類非結品形之奈米結構。從實驗結果可知,經電漿處理後之鈦金屬表面氣化層厚度增加,且其晶格為奈米結構之金紅石,此二氧化鈦層之性質能增加對特定蛋白質之吸收與血液相容性,促進組織癒合之能力,進而改善鈦植體與骨之間的骨整合作用。

AB - 鈦金屬的良好生物相容性來自於它表面上那一層穩定且能抗腐蝕的氣化層,而且這一層氣化層的晶格結構和厚度多寡,對於細胞的行為有不同的影響,尤其是在蛋白質吸收和血液相容性方面。為了改善鈦植體與骨之間的骨整合作用,界面的反應攤須要能控制組織癒合的效果,且將非特定蛋白質的吸收降到最低。因此,本研究利用低溫電漿(glow discharge)來發展一植體表面處理技術,先以氫氣電漿清除鈦金屬表面一些微量的化學污染物及雜質,再以氣電漿讓鈦金屬表面產生一層緻密的二氧化鈦層。此氧化層經過物理性質與化學性質之檢測與分析後,可發現經電漿處理後的鈦金屬植體表面的二氧化鈦層厚度與處理的能量之間具有一正比關係,抗腐蝕能力亦相對的增加。以接觸角量測儀來分析其表面可濕潤性之變化,顯示電漿處理功率越高或時間越久,其表面越趨向親水性。經由低掠角X光繞射儀(GIXRD)與穿透式電子顯微鏡(TEM)之觀察得知,此氧化層為一存在有金紅石(rutile Ti○2)類非結品形之奈米結構。從實驗結果可知,經電漿處理後之鈦金屬表面氣化層厚度增加,且其晶格為奈米結構之金紅石,此二氧化鈦層之性質能增加對特定蛋白質之吸收與血液相容性,促進組織癒合之能力,進而改善鈦植體與骨之間的骨整合作用。

KW - 血液相容性

KW - 二氧化鈦

KW - 抗腐蝕

KW - 骨整合

KW - blood compatibility

KW - TiO2

KW - corrosion resistance

KW - osseointegration

M3 - 文章

VL - 1

SP - 185

EP - 192

JO - 中華牙醫學雜誌(中文版)

JF - 中華牙醫學雜誌(中文版)

SN - 1010-3287

IS - 3

ER -