Mechanical properties and biocompatibility of urethane acrylate-based 3D-printed denture base resin

Jy Jiunn Tzeng, Tzu Sen Yang, Wei Fang Lee, Hsuan Chen, Hung Ming Chang

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, five urethane acrylates (UAs), namely aliphatic urethane hexa-acrylate (87A), aromatic urethane hexa-acrylate (88A), aliphatic UA (588), aliphatic urethane triacrylate diluted in 15% HDD (594), and high-functional aliphatic UA (5812), were selected to formulate five UA-based photopolymer resins for digital light processing (DLP)-based 3D printing. Each UA (40 wt%) was added and blended homogenously with ethoxylated pentaerythritol tetraacrylate (40 wt%), isobornyl acrylate (12 wt%), diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (3 wt%), and a pink acrylic (5 wt%). Each UA-based resin specimen was designed using CAD software and fabricated using a DLP 3D printer to specific dimensions. Characteristics, mechanical properties, and cytotoxicity levels of these designed UA-based resins were investigated and compared with a commercial 3D printing denture base acrylic resin (BB base) control group at different UV exposure times. Shore hardness-measurement data and MTT assays were analyzed using a one-way analysis of variance with Bonferroni’s post hoc test, whereas viscosity, maximum strength, and modulus were analyzed using the Kruskal-Wallis test (α = 0.05). UA-based photopolymer resins with tunable mechanical properties were successfully prepared by replacing the UA materials and the UV exposure times. After 15 min of UV exposure, the 5812 and 594 groups exhibited higher viscosities, whereas the 88A and 87A groups exhibited lower viscosities compared with the BB base group. Maximum flexural strength, flexural modulus, and Shore hardness values also revealed significant differences among materials (p < 0.001). Based on MTT assay results, the UA-based photopolymer resins were nontoxic. In the present study, mechanical properties of the designed photopolymer resins could be adjusted by changing the UA or UV exposure time, suggesting that aliphatic urethane acrylate has good potential for use in the design of printable resins for DLP-type 3D printing in dental applications.

Original languageEnglish
Article number822
Pages (from-to)1-10
Number of pages10
JournalPolymers
Volume13
Issue number5
DOIs
Publication statusPublished - Mar 2021

Keywords

  • Complete denture base
  • Digital light processing
  • Photopolymer resin
  • Polyurethane acrylate

ASJC Scopus subject areas

  • Chemistry(all)
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Mechanical properties and biocompatibility of urethane acrylate-based 3D-printed denture base resin'. Together they form a unique fingerprint.

Cite this