TY - JOUR
T1 - Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+NKT cells in chemically induced IFN-γ-Mediated skin inflammation
AU - Hsieh, Chia-Yuan
AU - Chen, Chia-Ling
AU - Lin, Yee-Shin
AU - Yeh, Trai-Ming
AU - Tsai, Tsung-Ting
AU - Hong, Ming-Yuan
AU - Lin, Chiou Feng
PY - 2014/10/1
Y1 - 2014/10/1
N2 - IFN-γ mediates chemically induced skin inflammation; however, the mechanism by which IFN-γ-producing cells are recruited to the sites of inflammation remains undefined. Secretion of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, from damaged cells may promote immune cell recruitment. We hypothesized that MIF triggers an initial step in the chemotaxis of IFN-γ-producing cells in chemically induced skin inflammation. Using acute and chronic models of 12-Otetradecanoylphorbol- 13-acetate (TPA)-induced skin inflammation in mouse ears, MIF expression was examined, and its role in this process was investigated pharmacologically. The cell populations targeted by MIF, their receptor expression patterns, and the effects of MIF on cell migration were examined. TPA directly caused cytotoxicity accompanied by MIF release in mouse ear epidermal keratinocytes, as well as in human keratinocytic HaCaT cells. Treatment with theMIF antagonist (S,R)-3-(4-hydroxyphenyl)- 4,5-dihydro-5-isoxazole acetic acid methyl ester considerably attenuated TPA-induced ear swelling, leukocyte infiltration, epidermal cell proliferation, and dermal angiogenesis. Inhibition of MIF greatly diminished the dermal infiltration of IFN-γ+ NKT cells, whereas the addition of exogenous TPA and MIF to NKT cells promoted their IFN-γ production and migration, respectively. MIF specifically triggered the chemotaxis of NKT cells via CD74 and CXCR2, and the resulting depletion of NKT cells abolished TPAinduced skin inflammation. In TPA-induced skin inflammation, MIF is released from damaged keratinocytes and then triggers the chemotaxis of CD74+CXCR2+ NKT cells for IFN-γ production.
AB - IFN-γ mediates chemically induced skin inflammation; however, the mechanism by which IFN-γ-producing cells are recruited to the sites of inflammation remains undefined. Secretion of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, from damaged cells may promote immune cell recruitment. We hypothesized that MIF triggers an initial step in the chemotaxis of IFN-γ-producing cells in chemically induced skin inflammation. Using acute and chronic models of 12-Otetradecanoylphorbol- 13-acetate (TPA)-induced skin inflammation in mouse ears, MIF expression was examined, and its role in this process was investigated pharmacologically. The cell populations targeted by MIF, their receptor expression patterns, and the effects of MIF on cell migration were examined. TPA directly caused cytotoxicity accompanied by MIF release in mouse ear epidermal keratinocytes, as well as in human keratinocytic HaCaT cells. Treatment with theMIF antagonist (S,R)-3-(4-hydroxyphenyl)- 4,5-dihydro-5-isoxazole acetic acid methyl ester considerably attenuated TPA-induced ear swelling, leukocyte infiltration, epidermal cell proliferation, and dermal angiogenesis. Inhibition of MIF greatly diminished the dermal infiltration of IFN-γ+ NKT cells, whereas the addition of exogenous TPA and MIF to NKT cells promoted their IFN-γ production and migration, respectively. MIF specifically triggered the chemotaxis of NKT cells via CD74 and CXCR2, and the resulting depletion of NKT cells abolished TPAinduced skin inflammation. In TPA-induced skin inflammation, MIF is released from damaged keratinocytes and then triggers the chemotaxis of CD74+CXCR2+ NKT cells for IFN-γ production.
UR - http://www.scopus.com/inward/record.url?scp=84907200174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84907200174&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1400692
DO - 10.4049/jimmunol.1400692
M3 - Article
C2 - 25172501
AN - SCOPUS:84907200174
SN - 0022-1767
VL - 193
SP - 3693
EP - 3703
JO - Journal of Immunology
JF - Journal of Immunology
IS - 7
ER -