Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers

Pei Ling Wu, Yung Ning Yang, Jau Ling Suen, Yu Chen S.H. Yang, Chun Hwa Yang, San Nan Yang

Research output: Contribution to journalArticle

Abstract

Prenatal exposure to morphine causes altered glutamatergic neurotransmission, which plays an important pathophysiological role for neurobiological basis of opiate-mediated behaviors in such offspring. However, it is still not clear whether such alteration involves gene expression of ionotropic glutamate receptor subunits. In this study, we further studied whether prenatal morphine exposure resulted in long-term changes in the gene expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and postsynaptic density 95 in the mesocorticolimbic area (an essential integration circuitry for drug craving behavior), nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC), of rat offspring from morphine-addicted mothers. Experimental results showed that prenatal morphine exposure led to a persistent downregulation of gene expression in the AMPA and NMDA receptor subunit, with a differential manner of decreased magnitudes, at the age of postnatal days 14 (P14) and P30. However, in PFC, the gene expression of the AMPA receptor subunit was not synchronized in observed rat offspring subjected to prenatal morphine exposure. An upregulation of gene expression in the AMPA receptor subunit 3 (GluR3) was persistently observed at P14 and P30. Furthermore, the gene expressions of PSD-95 in NAc, VTA, and PFC were all decreased concurrently. Collectively, the results suggest that prenatal exposure to morphine may initiate molecular mechanisms leading to a long-lasting, differential alteration in gene expression of the inotropic glutamate receptor subunit and PSD-95 in the mesocorticolimbic circuitry in rat offspring. This study raises a possibility in which differential changes in gene expression with a long-lasting manner may play a role for the development of nearly permanent changes in opiate-mediated behaviors, at least in part for the neurobiological pathogenesis in offspring.

Original languageEnglish
Article number5437092
JournalBioMed Research International
Volume2018
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

Post-Synaptic Density
Gene expression
Morphine
Rats
Gene Expression
AMPA Receptors
Opiate Alkaloids
Prefrontal Cortex
Ventral Tegmental Area
Nucleus Accumbens
Ionotropic Glutamate Receptors
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
Glutamate Receptors
Synaptic Transmission
Up-Regulation
Down-Regulation
Acids

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Cite this

Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers. / Wu, Pei Ling; Yang, Yung Ning; Suen, Jau Ling; Yang, Yu Chen S.H.; Yang, Chun Hwa; Yang, San Nan.

In: BioMed Research International, Vol. 2018, 5437092, 01.01.2018.

Research output: Contribution to journalArticle

@article{794a4c43276d4cc2b36ca511852334d6,
title = "Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers",
abstract = "Prenatal exposure to morphine causes altered glutamatergic neurotransmission, which plays an important pathophysiological role for neurobiological basis of opiate-mediated behaviors in such offspring. However, it is still not clear whether such alteration involves gene expression of ionotropic glutamate receptor subunits. In this study, we further studied whether prenatal morphine exposure resulted in long-term changes in the gene expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and postsynaptic density 95 in the mesocorticolimbic area (an essential integration circuitry for drug craving behavior), nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC), of rat offspring from morphine-addicted mothers. Experimental results showed that prenatal morphine exposure led to a persistent downregulation of gene expression in the AMPA and NMDA receptor subunit, with a differential manner of decreased magnitudes, at the age of postnatal days 14 (P14) and P30. However, in PFC, the gene expression of the AMPA receptor subunit was not synchronized in observed rat offspring subjected to prenatal morphine exposure. An upregulation of gene expression in the AMPA receptor subunit 3 (GluR3) was persistently observed at P14 and P30. Furthermore, the gene expressions of PSD-95 in NAc, VTA, and PFC were all decreased concurrently. Collectively, the results suggest that prenatal exposure to morphine may initiate molecular mechanisms leading to a long-lasting, differential alteration in gene expression of the inotropic glutamate receptor subunit and PSD-95 in the mesocorticolimbic circuitry in rat offspring. This study raises a possibility in which differential changes in gene expression with a long-lasting manner may play a role for the development of nearly permanent changes in opiate-mediated behaviors, at least in part for the neurobiological pathogenesis in offspring.",
author = "Wu, {Pei Ling} and Yang, {Yung Ning} and Suen, {Jau Ling} and Yang, {Yu Chen S.H.} and Yang, {Chun Hwa} and Yang, {San Nan}",
year = "2018",
month = "1",
day = "1",
doi = "10.1155/2018/5437092",
language = "English",
volume = "2018",
journal = "BioMed Research International",
issn = "2314-6133",
publisher = "Hindawi Publishing Corporation",

}

TY - JOUR

T1 - Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers

AU - Wu, Pei Ling

AU - Yang, Yung Ning

AU - Suen, Jau Ling

AU - Yang, Yu Chen S.H.

AU - Yang, Chun Hwa

AU - Yang, San Nan

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Prenatal exposure to morphine causes altered glutamatergic neurotransmission, which plays an important pathophysiological role for neurobiological basis of opiate-mediated behaviors in such offspring. However, it is still not clear whether such alteration involves gene expression of ionotropic glutamate receptor subunits. In this study, we further studied whether prenatal morphine exposure resulted in long-term changes in the gene expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and postsynaptic density 95 in the mesocorticolimbic area (an essential integration circuitry for drug craving behavior), nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC), of rat offspring from morphine-addicted mothers. Experimental results showed that prenatal morphine exposure led to a persistent downregulation of gene expression in the AMPA and NMDA receptor subunit, with a differential manner of decreased magnitudes, at the age of postnatal days 14 (P14) and P30. However, in PFC, the gene expression of the AMPA receptor subunit was not synchronized in observed rat offspring subjected to prenatal morphine exposure. An upregulation of gene expression in the AMPA receptor subunit 3 (GluR3) was persistently observed at P14 and P30. Furthermore, the gene expressions of PSD-95 in NAc, VTA, and PFC were all decreased concurrently. Collectively, the results suggest that prenatal exposure to morphine may initiate molecular mechanisms leading to a long-lasting, differential alteration in gene expression of the inotropic glutamate receptor subunit and PSD-95 in the mesocorticolimbic circuitry in rat offspring. This study raises a possibility in which differential changes in gene expression with a long-lasting manner may play a role for the development of nearly permanent changes in opiate-mediated behaviors, at least in part for the neurobiological pathogenesis in offspring.

AB - Prenatal exposure to morphine causes altered glutamatergic neurotransmission, which plays an important pathophysiological role for neurobiological basis of opiate-mediated behaviors in such offspring. However, it is still not clear whether such alteration involves gene expression of ionotropic glutamate receptor subunits. In this study, we further studied whether prenatal morphine exposure resulted in long-term changes in the gene expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and postsynaptic density 95 in the mesocorticolimbic area (an essential integration circuitry for drug craving behavior), nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC), of rat offspring from morphine-addicted mothers. Experimental results showed that prenatal morphine exposure led to a persistent downregulation of gene expression in the AMPA and NMDA receptor subunit, with a differential manner of decreased magnitudes, at the age of postnatal days 14 (P14) and P30. However, in PFC, the gene expression of the AMPA receptor subunit was not synchronized in observed rat offspring subjected to prenatal morphine exposure. An upregulation of gene expression in the AMPA receptor subunit 3 (GluR3) was persistently observed at P14 and P30. Furthermore, the gene expressions of PSD-95 in NAc, VTA, and PFC were all decreased concurrently. Collectively, the results suggest that prenatal exposure to morphine may initiate molecular mechanisms leading to a long-lasting, differential alteration in gene expression of the inotropic glutamate receptor subunit and PSD-95 in the mesocorticolimbic circuitry in rat offspring. This study raises a possibility in which differential changes in gene expression with a long-lasting manner may play a role for the development of nearly permanent changes in opiate-mediated behaviors, at least in part for the neurobiological pathogenesis in offspring.

UR - http://www.scopus.com/inward/record.url?scp=85049347547&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049347547&partnerID=8YFLogxK

U2 - 10.1155/2018/5437092

DO - 10.1155/2018/5437092

M3 - Article

C2 - 29984237

AN - SCOPUS:85049347547

VL - 2018

JO - BioMed Research International

JF - BioMed Research International

SN - 2314-6133

M1 - 5437092

ER -