Is dexamethasone-induced muscle atrophy an alternative model for naturally aged sarcopenia model?

Belle Yu Hsuan Wang, Allen Wei Ting Hsiao, Nicodemus Wong, Yi Fan Chen, Chien Wei Lee, Wayne Yuk Wai Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Primary sarcopenia is usually known as age-related skeletal muscle loss; however, other factors like endocrine, lifestyle and inflammation can also cause muscle loss, known as secondary sarcopenia. Although many studies have used different sarcopenia animal models for exploring the underlying mechanism and therapeutic approaches for sarcopenia, limited study has provided evidence of the relevance of these animal models. This study aims to investigate the similarity and difference in muscle qualities between primary and secondary sarcopenia mice models, using naturally aged mice and dexamethasone-induced mice. Methods: 21-month-old mice were used as naturally aged primary sarcopenia mice and 3-month-old mice received daily intraperitoneal injection of dexamethasone (20 mg/ kg body weight) for 10 days were used as secondary sarcopenia model. This study provided measurements for muscle mass and functions, including Dual-energy X-ray absorptiometry (DXA) scanning, handgrip strength test and treadmill running to exhaustion test. Besides, muscle contraction, muscle fibre type measurements and gene expression were also performed to provide additional information on muscle qualities. Results: The results suggest two sarcopenia animal models shared a comparable decrease in forelimb lean mass, muscle fibre size, grip strength and muscle contraction ability. Besides, the upregulation of protein degradation genes was also observed in two sarcopenia animal models. However, only primary sarcopenia mice were identified with an early stage of mtDNA deletion. Conclusion: Collectively, this study evaluated that the dexamethasone-induced mouse model could be served as an alternative model for primary sarcopenia, according to the comparable muscle mass and functional changes. However, whether dexamethasone-induced mice can be used as an animal model when studying the molecular mechanisms of sarcopenia needs to be carefully evaluated. The translational potential of this article: The purpose of sarcopenia research is to investigate appropriate treatments for reversing the loss of skeletal muscle mass and functions. Using animal models for the preclinical study could predict the safety and efficacy of the treatments. This study compared the typical age-related sarcopenia mice model and dexamethasone-induced secondary sarcopenia mice to provide evidence of the pathological and functional changes in the mice models.

Original languageEnglish
Pages (from-to)12-20
Number of pages9
JournalJournal of Orthopaedic Translation
Volume39
DOIs
Publication statusPublished - Mar 2023

Keywords

  • Animal model
  • Dexamethasone
  • Sarcopenia
  • Skeletal muscle function
  • Skeletal muscle mass

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Is dexamethasone-induced muscle atrophy an alternative model for naturally aged sarcopenia model?'. Together they form a unique fingerprint.

Cite this