Infectious Spondylitis-Associated Staphylococcus aureus with Virulence Gene pvl or tst Causes More Necrosis than Apoptosis in Human Alveolar Basal Epithelial Cell Line A549

Tsung-Jen Huang, Chi-Han Lee, Meng-Huang Wu, Yen Yao Li, Tsung Han Yang, Chin Chang Cheng, Ching-Yu Lee, Chih Cheng Lu, Chishih Chu

Research output: Contribution to journalArticle

Abstract

Methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA, respectively) can cause non-tuberculosis infectious spondylitis. In 43 cases of bacterial infectious spondylitis, Mycobacterium tuberculosis and S. aureus were the two major causative pathogens. MRSA caused more anterior operations and thoracic infections, while MSSA caused more posterior infections and lumbar infections. Differences between six S. aureus isolates from infectious spondylitis were characterized. MLST and staphylococcal cassette chromosome mec (SCCmec) analysis identified MSSA ST959 and ST30 isolates, MRSA ST239/SCCmec IIIA isolates 2 and 3, ST59/SCCmec IIIA-like isolate 6, and ST30/SCCmec IV isolate 5. While all of the isolates were resistant to penicillin and ampicillin, the MRSA isolates were more resistant than the MSSA isolates. Carbapenem-resistant MRSA ST239/SCCmec IIIA and ST59/SCCmec IIIA-like isolates of the agr1 type were also resistant to clindamycin and erythromycin. Leukocidin genes (pvl or lukED) and hemolysin genes (hla, hld and hlg) were present in all of the isolates. All six isolates caused more necrosis than apoptosis in the human alveolar basal epithelial cell line A549; however, ST59/SCCmec IIIA-like isolate 6, ST30/ SCCmec IV isolate 5 with pvl genes, and MSSA ST30 isolates with tst caused greater than 40% cell death after the 4-h incubation. Regardless of the MRSA isolate and its SCCmec type or the MSSA isolate, the infectious spondylitis-associated S. aureus isolates differed genetically, and the pvl and tst genes may be important genes for cell necrosis.
Original languageEnglish
Pages (from-to)479-488
JournalAdvances in Microbiology
Publication statusPublished - Jun 2016

Fingerprint

Alveolar Epithelial Cells
Spondylitis
Virulence
Staphylococcus aureus
Methicillin-Resistant Staphylococcus aureus
Necrosis
Chromosomes
Apoptosis
Cell Line
Genes
Infection
Leukocidins
Hemolysin Proteins
Carbapenems
Clindamycin
Erythromycin
Ampicillin
Mycobacterium tuberculosis
Penicillins
Cell Death

Cite this

Infectious Spondylitis-Associated Staphylococcus aureus with Virulence Gene pvl or tst Causes More Necrosis than Apoptosis in Human Alveolar Basal Epithelial Cell Line A549. / Huang, Tsung-Jen; Lee, Chi-Han; Wu, Meng-Huang; Li, Yen Yao; Yang, Tsung Han; Cheng, Chin Chang; Lee, Ching-Yu; Lu, Chih Cheng; Chu, Chishih.

In: Advances in Microbiology, 06.2016, p. 479-488.

Research output: Contribution to journalArticle

@article{3a6705d9d148402eacffc2957d49aa36,
title = "Infectious Spondylitis-Associated Staphylococcus aureus with Virulence Gene pvl or tst Causes More Necrosis than Apoptosis in Human Alveolar Basal Epithelial Cell Line A549",
abstract = "Methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA, respectively) can cause non-tuberculosis infectious spondylitis. In 43 cases of bacterial infectious spondylitis, Mycobacterium tuberculosis and S. aureus were the two major causative pathogens. MRSA caused more anterior operations and thoracic infections, while MSSA caused more posterior infections and lumbar infections. Differences between six S. aureus isolates from infectious spondylitis were characterized. MLST and staphylococcal cassette chromosome mec (SCCmec) analysis identified MSSA ST959 and ST30 isolates, MRSA ST239/SCCmec IIIA isolates 2 and 3, ST59/SCCmec IIIA-like isolate 6, and ST30/SCCmec IV isolate 5. While all of the isolates were resistant to penicillin and ampicillin, the MRSA isolates were more resistant than the MSSA isolates. Carbapenem-resistant MRSA ST239/SCCmec IIIA and ST59/SCCmec IIIA-like isolates of the agr1 type were also resistant to clindamycin and erythromycin. Leukocidin genes (pvl or lukED) and hemolysin genes (hla, hld and hlg) were present in all of the isolates. All six isolates caused more necrosis than apoptosis in the human alveolar basal epithelial cell line A549; however, ST59/SCCmec IIIA-like isolate 6, ST30/ SCCmec IV isolate 5 with pvl genes, and MSSA ST30 isolates with tst caused greater than 40{\%} cell death after the 4-h incubation. Regardless of the MRSA isolate and its SCCmec type or the MSSA isolate, the infectious spondylitis-associated S. aureus isolates differed genetically, and the pvl and tst genes may be important genes for cell necrosis.",
author = "Tsung-Jen Huang and Chi-Han Lee and Meng-Huang Wu and Li, {Yen Yao} and Yang, {Tsung Han} and Cheng, {Chin Chang} and Ching-Yu Lee and Lu, {Chih Cheng} and Chishih Chu",
year = "2016",
month = "6",
language = "English",
pages = "479--488",
journal = "Advances in Microbiology",

}

TY - JOUR

T1 - Infectious Spondylitis-Associated Staphylococcus aureus with Virulence Gene pvl or tst Causes More Necrosis than Apoptosis in Human Alveolar Basal Epithelial Cell Line A549

AU - Huang, Tsung-Jen

AU - Lee, Chi-Han

AU - Wu, Meng-Huang

AU - Li, Yen Yao

AU - Yang, Tsung Han

AU - Cheng, Chin Chang

AU - Lee, Ching-Yu

AU - Lu, Chih Cheng

AU - Chu, Chishih

PY - 2016/6

Y1 - 2016/6

N2 - Methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA, respectively) can cause non-tuberculosis infectious spondylitis. In 43 cases of bacterial infectious spondylitis, Mycobacterium tuberculosis and S. aureus were the two major causative pathogens. MRSA caused more anterior operations and thoracic infections, while MSSA caused more posterior infections and lumbar infections. Differences between six S. aureus isolates from infectious spondylitis were characterized. MLST and staphylococcal cassette chromosome mec (SCCmec) analysis identified MSSA ST959 and ST30 isolates, MRSA ST239/SCCmec IIIA isolates 2 and 3, ST59/SCCmec IIIA-like isolate 6, and ST30/SCCmec IV isolate 5. While all of the isolates were resistant to penicillin and ampicillin, the MRSA isolates were more resistant than the MSSA isolates. Carbapenem-resistant MRSA ST239/SCCmec IIIA and ST59/SCCmec IIIA-like isolates of the agr1 type were also resistant to clindamycin and erythromycin. Leukocidin genes (pvl or lukED) and hemolysin genes (hla, hld and hlg) were present in all of the isolates. All six isolates caused more necrosis than apoptosis in the human alveolar basal epithelial cell line A549; however, ST59/SCCmec IIIA-like isolate 6, ST30/ SCCmec IV isolate 5 with pvl genes, and MSSA ST30 isolates with tst caused greater than 40% cell death after the 4-h incubation. Regardless of the MRSA isolate and its SCCmec type or the MSSA isolate, the infectious spondylitis-associated S. aureus isolates differed genetically, and the pvl and tst genes may be important genes for cell necrosis.

AB - Methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA, respectively) can cause non-tuberculosis infectious spondylitis. In 43 cases of bacterial infectious spondylitis, Mycobacterium tuberculosis and S. aureus were the two major causative pathogens. MRSA caused more anterior operations and thoracic infections, while MSSA caused more posterior infections and lumbar infections. Differences between six S. aureus isolates from infectious spondylitis were characterized. MLST and staphylococcal cassette chromosome mec (SCCmec) analysis identified MSSA ST959 and ST30 isolates, MRSA ST239/SCCmec IIIA isolates 2 and 3, ST59/SCCmec IIIA-like isolate 6, and ST30/SCCmec IV isolate 5. While all of the isolates were resistant to penicillin and ampicillin, the MRSA isolates were more resistant than the MSSA isolates. Carbapenem-resistant MRSA ST239/SCCmec IIIA and ST59/SCCmec IIIA-like isolates of the agr1 type were also resistant to clindamycin and erythromycin. Leukocidin genes (pvl or lukED) and hemolysin genes (hla, hld and hlg) were present in all of the isolates. All six isolates caused more necrosis than apoptosis in the human alveolar basal epithelial cell line A549; however, ST59/SCCmec IIIA-like isolate 6, ST30/ SCCmec IV isolate 5 with pvl genes, and MSSA ST30 isolates with tst caused greater than 40% cell death after the 4-h incubation. Regardless of the MRSA isolate and its SCCmec type or the MSSA isolate, the infectious spondylitis-associated S. aureus isolates differed genetically, and the pvl and tst genes may be important genes for cell necrosis.

M3 - Article

SP - 479

EP - 488

JO - Advances in Microbiology

JF - Advances in Microbiology

ER -