In vitro and in vivo degradation of microfiber bioresorbable coronary scaffold

Chi-Hung Huang, Sheng-Yang Lee, Sonida Horng, Louis-Georges Guy, Ting-Bin Yu

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The degradation of Mirage Bioresorbable Microfiber Scaffold was evaluated in vitro and in vivo. The degradation in polymer molecular weight (MW), strut morphology, and integrity was accessed using gel permeation chromatography (GPC), X-ray micro-computed tomography (micro-CT) evaluation. To simulate the physiological degradation in vitro, scaffolds were deployed in silicone mock vessels connected to a peristaltic pumping system, which pumps 37°C phosphate-buffered saline (PBS, pH 7.4) at a constant rate. At various time points (30D, 60D, 90D, 180D, 270D, and 360D), the MW of microfibers decreased to 57.3, 49.8, 36.9, 13.9, 6.4, and 5.1% against the baseline. The in vivo degradation study was performed by implanting scaffolds in internal thoracic arteries (ITAs) of mini-swine. At the scheduled sacrifice time points (30D, 90D, 180D, 270D, 360D, and 540D), the implanted ITAs were excised for GPC analysis; the MW of the implanted scaffolds dropped to 58.5, 34.7, 24.8, 16.1, 12.9, and 7.1, respectively. Mass loss of scaffolds reached 72.4% at 540D of implantation. Two stages of hydrolysis were observed in in vitro and in vivo degradation kinetics, and the statistical analysis suggested a positive correlation between in vivo and in vitro degradation. After 6 months of incubation in animals, significant strut degradation was seen in the micro-CT evaluation in all sections as strut fragments and separations. The micro-CT results further confirmed that every sample at 720D had X-ray transmission similar to surrounding tissue, thereby indicating full degradation within 2 years. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

Original languageEnglish
JournalJournal of Biomedical Materials Research - Part B Applied Biomaterials
DOIs
Publication statusPublished - 2018

Fingerprint

Mammary Arteries
Molecular Weight
Gel Chromatography
Tomography
X-Ray Microtomography
Silicones
Polymers
Hydrolysis
Swine
Phosphates
Mothers
X-Rays
In Vitro Techniques
Mirage

Keywords

  • Journal Article

Cite this

In vitro and in vivo degradation of microfiber bioresorbable coronary scaffold. / Huang, Chi-Hung; Lee, Sheng-Yang; Horng, Sonida; Guy, Louis-Georges; Yu, Ting-Bin.

In: Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018.

Research output: Contribution to journalArticle

@article{b165a621b98d4a74977cb92a14a18f8b,
title = "In vitro and in vivo degradation of microfiber bioresorbable coronary scaffold",
abstract = "The degradation of Mirage Bioresorbable Microfiber Scaffold was evaluated in vitro and in vivo. The degradation in polymer molecular weight (MW), strut morphology, and integrity was accessed using gel permeation chromatography (GPC), X-ray micro-computed tomography (micro-CT) evaluation. To simulate the physiological degradation in vitro, scaffolds were deployed in silicone mock vessels connected to a peristaltic pumping system, which pumps 37°C phosphate-buffered saline (PBS, pH 7.4) at a constant rate. At various time points (30D, 60D, 90D, 180D, 270D, and 360D), the MW of microfibers decreased to 57.3, 49.8, 36.9, 13.9, 6.4, and 5.1{\%} against the baseline. The in vivo degradation study was performed by implanting scaffolds in internal thoracic arteries (ITAs) of mini-swine. At the scheduled sacrifice time points (30D, 90D, 180D, 270D, 360D, and 540D), the implanted ITAs were excised for GPC analysis; the MW of the implanted scaffolds dropped to 58.5, 34.7, 24.8, 16.1, 12.9, and 7.1, respectively. Mass loss of scaffolds reached 72.4{\%} at 540D of implantation. Two stages of hydrolysis were observed in in vitro and in vivo degradation kinetics, and the statistical analysis suggested a positive correlation between in vivo and in vitro degradation. After 6 months of incubation in animals, significant strut degradation was seen in the micro-CT evaluation in all sections as strut fragments and separations. The micro-CT results further confirmed that every sample at 720D had X-ray transmission similar to surrounding tissue, thereby indicating full degradation within 2 years. {\circledC} 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.",
keywords = "Journal Article",
author = "Chi-Hung Huang and Sheng-Yang Lee and Sonida Horng and Louis-Georges Guy and Ting-Bin Yu",
note = "{\circledC} 2017 Wiley Periodicals, Inc.",
year = "2018",
doi = "10.1002/jbm.b.33987",
language = "English",
journal = "Journal of Biomedical Materials Research",
issn = "1552-4973",
publisher = "Heterocorporation",

}

TY - JOUR

T1 - In vitro and in vivo degradation of microfiber bioresorbable coronary scaffold

AU - Huang, Chi-Hung

AU - Lee, Sheng-Yang

AU - Horng, Sonida

AU - Guy, Louis-Georges

AU - Yu, Ting-Bin

N1 - © 2017 Wiley Periodicals, Inc.

PY - 2018

Y1 - 2018

N2 - The degradation of Mirage Bioresorbable Microfiber Scaffold was evaluated in vitro and in vivo. The degradation in polymer molecular weight (MW), strut morphology, and integrity was accessed using gel permeation chromatography (GPC), X-ray micro-computed tomography (micro-CT) evaluation. To simulate the physiological degradation in vitro, scaffolds were deployed in silicone mock vessels connected to a peristaltic pumping system, which pumps 37°C phosphate-buffered saline (PBS, pH 7.4) at a constant rate. At various time points (30D, 60D, 90D, 180D, 270D, and 360D), the MW of microfibers decreased to 57.3, 49.8, 36.9, 13.9, 6.4, and 5.1% against the baseline. The in vivo degradation study was performed by implanting scaffolds in internal thoracic arteries (ITAs) of mini-swine. At the scheduled sacrifice time points (30D, 90D, 180D, 270D, 360D, and 540D), the implanted ITAs were excised for GPC analysis; the MW of the implanted scaffolds dropped to 58.5, 34.7, 24.8, 16.1, 12.9, and 7.1, respectively. Mass loss of scaffolds reached 72.4% at 540D of implantation. Two stages of hydrolysis were observed in in vitro and in vivo degradation kinetics, and the statistical analysis suggested a positive correlation between in vivo and in vitro degradation. After 6 months of incubation in animals, significant strut degradation was seen in the micro-CT evaluation in all sections as strut fragments and separations. The micro-CT results further confirmed that every sample at 720D had X-ray transmission similar to surrounding tissue, thereby indicating full degradation within 2 years. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

AB - The degradation of Mirage Bioresorbable Microfiber Scaffold was evaluated in vitro and in vivo. The degradation in polymer molecular weight (MW), strut morphology, and integrity was accessed using gel permeation chromatography (GPC), X-ray micro-computed tomography (micro-CT) evaluation. To simulate the physiological degradation in vitro, scaffolds were deployed in silicone mock vessels connected to a peristaltic pumping system, which pumps 37°C phosphate-buffered saline (PBS, pH 7.4) at a constant rate. At various time points (30D, 60D, 90D, 180D, 270D, and 360D), the MW of microfibers decreased to 57.3, 49.8, 36.9, 13.9, 6.4, and 5.1% against the baseline. The in vivo degradation study was performed by implanting scaffolds in internal thoracic arteries (ITAs) of mini-swine. At the scheduled sacrifice time points (30D, 90D, 180D, 270D, 360D, and 540D), the implanted ITAs were excised for GPC analysis; the MW of the implanted scaffolds dropped to 58.5, 34.7, 24.8, 16.1, 12.9, and 7.1, respectively. Mass loss of scaffolds reached 72.4% at 540D of implantation. Two stages of hydrolysis were observed in in vitro and in vivo degradation kinetics, and the statistical analysis suggested a positive correlation between in vivo and in vitro degradation. After 6 months of incubation in animals, significant strut degradation was seen in the micro-CT evaluation in all sections as strut fragments and separations. The micro-CT results further confirmed that every sample at 720D had X-ray transmission similar to surrounding tissue, thereby indicating full degradation within 2 years. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

KW - Journal Article

U2 - 10.1002/jbm.b.33987

DO - 10.1002/jbm.b.33987

M3 - Article

C2 - 28922543

JO - Journal of Biomedical Materials Research

JF - Journal of Biomedical Materials Research

SN - 1552-4973

ER -