Improved diagnosis-medication association mining to reduce pseudo-associations

Ching Huan Wang, Phung Anh Nguyen, Yu Chuan (Jack) Li, Md Mohaimenul Islam, Tahmina Nasrin Poly, Quoc Viet Tran, Chih Wei Huang, Hsuan Chia Yang

Research output: Contribution to journalArticlepeer-review

Abstract

Background and Objective: Association rule mining has been adopted to medical fields to discover prescribing patterns or relationships among diseases and/or medications; however, it has generated unreasonable associations among these entities. This study aims to identify the real-world profile of disease-medication (DM) associations using the modified mining algorithm and assess its performance in reducing DM pseudo-associations. Methods: We retrieved data from outpatient records between January 2011 and December 2015 in claims databases maintained by the Health and Welfare Data Science Center, Ministry of Health and Welfare, Taiwan. The association rule mining's lift (Q-value) was adopted to quantify DM associations, referred to as Q1 for the original algorithm and as Q2 for the modified algorithm. One thousand DM pairs with positive Q1-values (Q1+) and negative or no Q2-values (Q2 or Q2) were selected as the validation dataset, in which two pharmacists assessed the DM associations. Results: A total of 3,120,449 unique DM pairs were identified, of which there were 333,347 Q1+Q2 pairs and 429,931 Q1+Q2 pairs. Q1+Q2 rates were relatively high in ATC classes C (29.91%) and R (30.24%). Classes L (69.91%) and V (52.52%) demonstrated remarkably high Q1+Q2 rates. For the 1000 pairs in the validation, 93.7% of the Q1+Q2 or Q1+Q2 DM pairs were assessed as pseudo-associations. However, classes M (5.3%), H (4.5%), and B (4.1%) showed the highest rates of plausible associations falsely given Q2 or Q2 by the modified algorithm. Conclusions: The modified algorithm demonstrated high accuracy to identify pseudo-associations regarded as positive associations by the original algorithm and would potentially be applied to improve secondary databases to facilitate research on real-world prescribing patterns and further enhance drug safety.

Original languageEnglish
Article number106181
JournalComputer Methods and Programs in Biomedicine
Volume207
DOIs
Publication statusPublished - Aug 2021

Keywords

  • Association rule mining
  • Disease-medication association
  • Inappropriate prescription
  • Pseudo-association
  • Taiwan database

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Health Informatics

Fingerprint

Dive into the research topics of 'Improved diagnosis-medication association mining to reduce pseudo-associations'. Together they form a unique fingerprint.

Cite this