Human ribonucleotide reductase M2 subunit gene amplification and transcriptional regulation in a homogeneous staining chromosome region responsible for the mechanism of drug resistance

B. Zhou, X. Mo, X. Liu, W. Qiu, Yun Yen

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

In our previous publication it was shown that a Gemcitabine-resistant KBGem clone derived from step-wise exposure to Gemcitabine resulted in overexpression of the human Ribonucleotide Reductase M2 subunit (hRRM2) mRNA and protein (Goan et al., 1999). In this study we confirm these results and show that the hRRM2 gene amplification arises in a homogeneous staining region (hsr) derived from chromosome translocation. The hydroxyurea-resistant clone (KBHURs) was studied as a comparison. PCR analysis of the hRRM2 gene promoter confirmed the amplification. Northern and Western blots were further employed to confirm the gene amplification and hRRM2 mRNA and protein expression were compatible with the level of drug resistance. Cells synchronized by serum starvation and then returned to serum-containing growth conditions showed a rapid induction of high levels of transcription of the hRRM2 gene. To clarify whether expression of hRRM2 mRNA was regulated at a transcriptional level, several transcription factors, including AP-1, Sp1, AP-2, CREB, NF-ΚB, and OCT1, were examined by gel-shift assay. Interestingly, the KBGem clone was regulated by different transcription factors than the KBHURs clone. Compared to the wild-type KB cells (KBwt), the KBGem clone exhibited a different binding pattern for Sp1 and NF-ΚB. The KBHURs clone, however, demonstrated a unique binding pattern with AP-1 and CREB, different from the KBwt control as well as the KBGem clone. Therefore, we conclude that the drug-resistant phenotype is associated with human RRM2 gene amplification from a homogeneous staining chromosome region and altered transcription regulation. Each clone demonstrated a unique pattern of transcription factor binding that may play a vital role in the mechanism of drug resistance.

Original languageEnglish
Pages (from-to)34-42
Number of pages9
JournalCytogenetics and Cell Genetics
Volume95
Issue number1-2
Publication statusPublished - Dec 1 2001
Externally publishedYes

Fingerprint

Gene Amplification
Drug Resistance
Clone Cells
Chromosomes
Staining and Labeling
gemcitabine
Transcription Factor AP-1
Messenger RNA
Transcription Factors
KB Cells
Hydroxyurea
ribonucleotide reductase M2
Starvation
Serum
Northern Blotting
Genes
Proteins
Western Blotting
Gels
Phenotype

ASJC Scopus subject areas

  • Genetics
  • Cell Biology

Cite this

@article{cb5a20fa7ab34ce5b0e5a65fec7569dc,
title = "Human ribonucleotide reductase M2 subunit gene amplification and transcriptional regulation in a homogeneous staining chromosome region responsible for the mechanism of drug resistance",
abstract = "In our previous publication it was shown that a Gemcitabine-resistant KBGem clone derived from step-wise exposure to Gemcitabine resulted in overexpression of the human Ribonucleotide Reductase M2 subunit (hRRM2) mRNA and protein (Goan et al., 1999). In this study we confirm these results and show that the hRRM2 gene amplification arises in a homogeneous staining region (hsr) derived from chromosome translocation. The hydroxyurea-resistant clone (KBHURs) was studied as a comparison. PCR analysis of the hRRM2 gene promoter confirmed the amplification. Northern and Western blots were further employed to confirm the gene amplification and hRRM2 mRNA and protein expression were compatible with the level of drug resistance. Cells synchronized by serum starvation and then returned to serum-containing growth conditions showed a rapid induction of high levels of transcription of the hRRM2 gene. To clarify whether expression of hRRM2 mRNA was regulated at a transcriptional level, several transcription factors, including AP-1, Sp1, AP-2, CREB, NF-ΚB, and OCT1, were examined by gel-shift assay. Interestingly, the KBGem clone was regulated by different transcription factors than the KBHURs clone. Compared to the wild-type KB cells (KBwt), the KBGem clone exhibited a different binding pattern for Sp1 and NF-ΚB. The KBHURs clone, however, demonstrated a unique binding pattern with AP-1 and CREB, different from the KBwt control as well as the KBGem clone. Therefore, we conclude that the drug-resistant phenotype is associated with human RRM2 gene amplification from a homogeneous staining chromosome region and altered transcription regulation. Each clone demonstrated a unique pattern of transcription factor binding that may play a vital role in the mechanism of drug resistance.",
author = "B. Zhou and X. Mo and X. Liu and W. Qiu and Yun Yen",
year = "2001",
month = "12",
day = "1",
language = "English",
volume = "95",
pages = "34--42",
journal = "Cytogenetic and Genome Research",
issn = "1424-8581",
publisher = "S. Karger AG",
number = "1-2",

}

TY - JOUR

T1 - Human ribonucleotide reductase M2 subunit gene amplification and transcriptional regulation in a homogeneous staining chromosome region responsible for the mechanism of drug resistance

AU - Zhou, B.

AU - Mo, X.

AU - Liu, X.

AU - Qiu, W.

AU - Yen, Yun

PY - 2001/12/1

Y1 - 2001/12/1

N2 - In our previous publication it was shown that a Gemcitabine-resistant KBGem clone derived from step-wise exposure to Gemcitabine resulted in overexpression of the human Ribonucleotide Reductase M2 subunit (hRRM2) mRNA and protein (Goan et al., 1999). In this study we confirm these results and show that the hRRM2 gene amplification arises in a homogeneous staining region (hsr) derived from chromosome translocation. The hydroxyurea-resistant clone (KBHURs) was studied as a comparison. PCR analysis of the hRRM2 gene promoter confirmed the amplification. Northern and Western blots were further employed to confirm the gene amplification and hRRM2 mRNA and protein expression were compatible with the level of drug resistance. Cells synchronized by serum starvation and then returned to serum-containing growth conditions showed a rapid induction of high levels of transcription of the hRRM2 gene. To clarify whether expression of hRRM2 mRNA was regulated at a transcriptional level, several transcription factors, including AP-1, Sp1, AP-2, CREB, NF-ΚB, and OCT1, were examined by gel-shift assay. Interestingly, the KBGem clone was regulated by different transcription factors than the KBHURs clone. Compared to the wild-type KB cells (KBwt), the KBGem clone exhibited a different binding pattern for Sp1 and NF-ΚB. The KBHURs clone, however, demonstrated a unique binding pattern with AP-1 and CREB, different from the KBwt control as well as the KBGem clone. Therefore, we conclude that the drug-resistant phenotype is associated with human RRM2 gene amplification from a homogeneous staining chromosome region and altered transcription regulation. Each clone demonstrated a unique pattern of transcription factor binding that may play a vital role in the mechanism of drug resistance.

AB - In our previous publication it was shown that a Gemcitabine-resistant KBGem clone derived from step-wise exposure to Gemcitabine resulted in overexpression of the human Ribonucleotide Reductase M2 subunit (hRRM2) mRNA and protein (Goan et al., 1999). In this study we confirm these results and show that the hRRM2 gene amplification arises in a homogeneous staining region (hsr) derived from chromosome translocation. The hydroxyurea-resistant clone (KBHURs) was studied as a comparison. PCR analysis of the hRRM2 gene promoter confirmed the amplification. Northern and Western blots were further employed to confirm the gene amplification and hRRM2 mRNA and protein expression were compatible with the level of drug resistance. Cells synchronized by serum starvation and then returned to serum-containing growth conditions showed a rapid induction of high levels of transcription of the hRRM2 gene. To clarify whether expression of hRRM2 mRNA was regulated at a transcriptional level, several transcription factors, including AP-1, Sp1, AP-2, CREB, NF-ΚB, and OCT1, were examined by gel-shift assay. Interestingly, the KBGem clone was regulated by different transcription factors than the KBHURs clone. Compared to the wild-type KB cells (KBwt), the KBGem clone exhibited a different binding pattern for Sp1 and NF-ΚB. The KBHURs clone, however, demonstrated a unique binding pattern with AP-1 and CREB, different from the KBwt control as well as the KBGem clone. Therefore, we conclude that the drug-resistant phenotype is associated with human RRM2 gene amplification from a homogeneous staining chromosome region and altered transcription regulation. Each clone demonstrated a unique pattern of transcription factor binding that may play a vital role in the mechanism of drug resistance.

UR - http://www.scopus.com/inward/record.url?scp=0035735691&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035735691&partnerID=8YFLogxK

M3 - Article

C2 - 11978967

AN - SCOPUS:0035735691

VL - 95

SP - 34

EP - 42

JO - Cytogenetic and Genome Research

JF - Cytogenetic and Genome Research

SN - 1424-8581

IS - 1-2

ER -