Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×105 cells and 1×106 cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×105 cells), and LPS+MSCs (1×106 cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×105 cells and 1×106 cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways.

Original languageEnglish
Pages (from-to)906-914
Number of pages9
JournalClinical and Experimental Pharmacology and Physiology
Volume43
Issue number10
DOIs
Publication statusPublished - Oct 1 2016

Fingerprint

Mesenchymal Stromal Cells
Pulmonary Hypertension
Lipopolysaccharides
Heart Ventricles
Mesenchymal Stem Cell Transplantation
Right Ventricular Hypertrophy
Toll-Like Receptor 4
Therapeutics
Cardiomegaly
Cardiac Myocytes
Myosin Heavy Chains
Sprague Dawley Rats
Tumor Necrosis Factor-alpha
Lung
Injections

Keywords

  • lipopolysaccharide
  • medial wall thickness
  • toll-like receptor
  • β-myosin heavy chain

ASJC Scopus subject areas

  • Physiology
  • Pharmacology
  • Physiology (medical)

Cite this

@article{22b28b195ec6472d9ecff9c904043b3f,
title = "Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats",
abstract = "Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×105 cells and 1×106 cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×105 cells), and LPS+MSCs (1×106 cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×105 cells and 1×106 cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways.",
keywords = "lipopolysaccharide, medial wall thickness, toll-like receptor, β-myosin heavy chain",
author = "Chou, {Hsiu Chu} and Willie Lin and Chen, {Chung Ming}",
year = "2016",
month = "10",
day = "1",
doi = "10.1111/1440-1681.12604",
language = "English",
volume = "43",
pages = "906--914",
journal = "Clinical and Experimental Pharmacology and Physiology",
issn = "0305-1870",
publisher = "Wiley-Blackwell",
number = "10",

}

TY - JOUR

T1 - Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats

AU - Chou, Hsiu Chu

AU - Lin, Willie

AU - Chen, Chung Ming

PY - 2016/10/1

Y1 - 2016/10/1

N2 - Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×105 cells and 1×106 cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×105 cells), and LPS+MSCs (1×106 cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×105 cells and 1×106 cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways.

AB - Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×105 cells and 1×106 cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×105 cells), and LPS+MSCs (1×106 cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×105 cells and 1×106 cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways.

KW - lipopolysaccharide

KW - medial wall thickness

KW - toll-like receptor

KW - β-myosin heavy chain

UR - http://www.scopus.com/inward/record.url?scp=84985036819&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84985036819&partnerID=8YFLogxK

U2 - 10.1111/1440-1681.12604

DO - 10.1111/1440-1681.12604

M3 - Article

C2 - 27273502

AN - SCOPUS:84985036819

VL - 43

SP - 906

EP - 914

JO - Clinical and Experimental Pharmacology and Physiology

JF - Clinical and Experimental Pharmacology and Physiology

SN - 0305-1870

IS - 10

ER -