Abstract

INTRODUCTION: Efficacy and safety are critical concerns when designing drug carriers. Nanoparticles are a particular type of carrier that has gained recent attention in cancer therapeutics. METHODS: In this study, we assess the safety profile of IT-101, a nanoparticle formed by self-assembly of camptothecin (CPT) conjugated cyclodextrin-based polymers. IT-101 delivers CPT to target cancer cells in animal models of numerous human cancers and in humans. Previous data from preclinical and clinical trials indicate that IT-101 has no notable immunological side effects. However, there have been no published studies focused on evaluating the effects of IT-101 on host immune systems. RESULTS: In this work, we demonstrate that IT-101 diminished initial host immune response following first injection of the nanopharmaceutical and induced NK cell activation and T cell proliferation upon further IT-101 exposure. Additionally, IT-101 could attenuate tumor growth more efficiently than CPT treatment only. CONCLUSIONS: Drugs administration in whole-body circulation may lead to poorly bioavailable in central nervous system and often has toxic effects on peripheral tissues. Conjugated with cyclodextrin-based polymers not only reduce adverse effects but also modulate the immune responses to elevate drug efficacy. These immune responses may potentially facilitate actions of immune blockage, such as PD1/PDL1 in cancer treatment.

Original languageEnglish
Article number85
Number of pages1
JournalJournal of Biomedical Science
Volume26
Issue number1
DOIs
Publication statusPublished - Oct 23 2019

Keywords

  • Brain tumor
  • Camptothecin
  • Immune responses
  • Nanoparticle

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Molecular Biology
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Host immune response to anti-cancer camptothecin conjugated cyclodextrin-based polymers'. Together they form a unique fingerprint.

  • Cite this