High UV-VIS-NIR light-induced antibacterial activity by heterostructured TiO2-FeS2 nanocomposites

Chinmaya Mutalik, Yu Cheng Hsiao, Yi Hsuan Chang, Dyah Ika Krisnawati, Moh Alimansur, Achmad Jazidie, Mohammad Nuh, Chia Che Chang, Di Yan Wang, Tsung Rong Kuo

Research output: Contribution to journalArticlepeer-review

Abstract

Purpose: Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. Methods: In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were success-fully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. Results: In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 − and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. Conclusion: TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.

Original languageEnglish
Pages (from-to)8911-8920
Number of pages10
JournalInternational Journal of Nanomedicine
Volume15
DOIs
Publication statusPublished - 2020

Keywords

  • Antibacterial agent
  • Antibacterial mechanism
  • Light harvester
  • Light-induced antibacterial activity
  • Reactive oxygen species

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Pharmaceutical Science
  • Drug Discovery
  • Organic Chemistry

Fingerprint Dive into the research topics of 'High UV-VIS-NIR light-induced antibacterial activity by heterostructured TiO<sub>2</sub>-FeS<sub>2</sub> nanocomposites'. Together they form a unique fingerprint.

Cite this