Abstract

Vascular dementia (VaD) is the second most common cause of dementia, but the treatment is still lacking. Although many studies have reported that histone deacetylase inhibitors (HDACis) confer protective effects against ischemic and hypoxic injuries, their role in VaD is still uncertain. Previous studies shown, one HDACi protected against cognitive decline in animals with chronic cerebral hypoperfusion (CCH). However, the underlying mechanisms remain elusive. In this study, we tested several 10,11-dihydro-5H-dibenzo[b,f]azepine hydroxamates, which act as HDACis in the CCH model (in vivo), and SH-SY5Y (neuroblastoma cells) with oxygen-glucose deprivation (OGD, in vitro). We identified a compound 13, which exhibited the best cell viability under OGD. The compound 13 could increase, in part, the protein levels of brain-derived neurotrophic factor (BDNF). It increased acetylation status on lysine 14 residue of histone 3 (H3K14) and lysine 5 of histone 4 (H4K5). We further clarified which promoters (I, II, III, IV or IX) could be affected by histone acetylation altered by compound 13. The results of chromatin immunoprecipitation and Q-PCR analysis indicate that an increase in H3K14 acetylation leads to an increase in the expression of BDNF promoter II, while an increase in H4K5 acetylation results in an increase in the activity of BDNF promoter II and III. Afterwards, these cause an increase in the expression of BDNF exon II, III and coding exon IX. In summary, the HDACi compound 13 may increase BDNF specific isoforms expression to rescue the ischemic and hypoxic injuries through changes of acetylation on histones.

Original languageEnglish
Pages (from-to)6966-6977
Number of pages12
JournalJournal of Cellular and Molecular Medicine
Volume24
Issue number12
Early online dateMay 6 2020
DOIs
Publication statusPublished - Jun 2020

Keywords

  • HDAC
  • OGD
  • histone acetylation
  • histone deacetylase inhibitor
  • vascular dementia

ASJC Scopus subject areas

  • Molecular Medicine
  • Cell Biology

Fingerprint Dive into the research topics of 'HDAC inhibitor protects chronic cerebral hypoperfusion and oxygen-glucose deprivation injuries via H3K14 and H4K5 acetylation-mediated BDNF expression'. Together they form a unique fingerprint.

  • Cite this