GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and akt pathway after epirubicin treatment in colon cancer DLD-1 cells

Yu Jia Chang, Yi Ping Huang, Zih Ling Li, Ching Hsein Chen

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

Introduction: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. Methodology/Principal Findings: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3β, as well as downstream targets of β-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. Conclusions: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells.

Original languageEnglish
Article numbere35123
JournalPLoS One
Volume7
Issue number4
DOIs
Publication statusPublished - Apr 18 2012

Fingerprint

epirubicin
Epirubicin
Oxidative stress
colorectal neoplasms
Colonic Neoplasms
Oxidative Stress
oxidative stress
Down-Regulation
apoptosis
Apoptosis
Protein Phosphatase 2
Reactive Oxygen Species
cells
phosphoprotein phosphatase
reactive oxygen species
Therapeutics
Chemical activation
Propyl Gallate
Glycogen Synthase Kinase 3
Catenins

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and akt pathway after epirubicin treatment in colon cancer DLD-1 cells. / Chang, Yu Jia; Huang, Yi Ping; Li, Zih Ling; Chen, Ching Hsein.

In: PLoS One, Vol. 7, No. 4, e35123, 18.04.2012.

Research output: Contribution to journalArticle

@article{abc4294cec3244bf86e7ecef225adb6f,
title = "GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and akt pathway after epirubicin treatment in colon cancer DLD-1 cells",
abstract = "Introduction: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. Methodology/Principal Findings: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3β, as well as downstream targets of β-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. Conclusions: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells.",
author = "Chang, {Yu Jia} and Huang, {Yi Ping} and Li, {Zih Ling} and Chen, {Ching Hsein}",
year = "2012",
month = "4",
day = "18",
doi = "10.1371/journal.pone.0035123",
language = "English",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "4",

}

TY - JOUR

T1 - GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and akt pathway after epirubicin treatment in colon cancer DLD-1 cells

AU - Chang, Yu Jia

AU - Huang, Yi Ping

AU - Li, Zih Ling

AU - Chen, Ching Hsein

PY - 2012/4/18

Y1 - 2012/4/18

N2 - Introduction: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. Methodology/Principal Findings: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3β, as well as downstream targets of β-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. Conclusions: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells.

AB - Introduction: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. Methodology/Principal Findings: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3β, as well as downstream targets of β-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. Conclusions: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells.

UR - http://www.scopus.com/inward/record.url?scp=84859962402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84859962402&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0035123

DO - 10.1371/journal.pone.0035123

M3 - Article

C2 - 22529978

AN - SCOPUS:84859962402

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 4

M1 - e35123

ER -